2021 Annual Report for Authorization 8808

Atlantic Power - Williams Lake Power Plant

Jacob Steyl

Executive Summary

This Report details the Environmental Emissions from January 1, 2021 to December 31, 2021 and fulfils the requirement of section 3.6 of Authorization 8808 [1].

No rail ties or greater than 1% construction and demolition (C&D) waste were used as feedstock during the reporting period. A total of 480,258 wet tonnes of clean biomass was incinerated during 6,420 hours of normal operation.

During this time two discrete monitoring sessions (one for Air Discharge from the Stack and one for Ash Analysis) were performed. The test results were compared against the levels in Permit 8808 and the Hazardous Waste Regulation, and no exceedances of any of the parameters in Schedules A and D of the Permit measured.

Continuous Emissions Monitoring System (CEMS) measurements were also taken as required by the Permit throughout this Period, with no exceedances recorded.

Respectfully,

Jacob Steyl, P.Eng

February 7, 2022

Table of Contents

l ab	le of Tables and Figures	Ш
Non	nenclature and Abbreviations	iii
1	Introduction	1
2	Monthly Operating Hours	2
3	Fuel	2
4	Continuous Emissions Monitoring	3
4.1	Sulphur Oxides	3
4.2	Nitrogen Oxides	3
4.3	Hydrochloric Acid	3
4.4	Combustion Temperature	3
5	Discrete Monitoring	4
5.1	Air Emissions Stack Test	4
5.2	Ash Testing	5
6	Exceedances	6
7	References	
	endix A – Stack Particulate Test	
App	endix B - Ash Analysis Report	19
Tal	ble of Tables and Figures	
Tabl	le 2-1: Operating hours per month	2
Tabl	le 3-1: Monthly and Annual Amounts of Fuel	2
	le 4-1: Maximum hourly NO _x as NO ₂ per month and average for the Month	
	le 5-1: Schedule A Discrete Monitoring Results	
	le 5-2: Schedule D Discrete Monitoring Results	
Figu	re 1-1: Normal Operating time for 2021	1
Figu	re 5-1: Hourly Average Steam Production data for October 27, 2021 Discrete Testing	6

Nomenclature and Abbreviations

C&D - Construction and Demolition waste

MoE - Ministry of Environment

NO₂ - Nitrogen Dioxide

NO_x - Nitrogen Oxides

O₂ - Molecular Oxygen

TEQ - Toxic Equivalency

USEPA - United States Environmental Protection Agency

hr - Hour

kg/s - Kilograms per Second

lb/hr - Pounds per Hour

m³/s - Cubic Meter per second

mg/kg - Milligrams per Kilogram (1 ppm)

mg/L - Milligrams per Liter

mg/m³ - Milligrams per cubic Meter

mt – Metric Tonnes

MW - Megawatt

pg/g – Picogram per Gram (0.001ppb)

ppb - Parts Per Billion

ppm - Parts Per Million (1,000 ppb)

1 Introduction

An amendment was issued for permit 8808 on 18 September 2019 to Atlantic Power Preferred Equity Ltd located at 4455 Mackenzie Ave N, Williams Lake, B.C., V2G 4R7. The revised permit calls for an Annual Report outlined in Section 3.6 of the Permit [1].

Jacob Steyl P.Eng, Maintenance Manager and Chris Turner, Controls Specialist, were responsible for collecting data and compiling this report. A. Lanfranco & Associates Inc. and Bureau Veritas conducted discrete monitoring outlined in sections 3.1.2 Schedule A and 3.1.3 Schedule D of the Permit [1].

The reporting window for this Report is 00:00 on 1 January 2021 to 00:00 1 January 2022. The Plant was curtailed for an extended period during the year, as show in Figure 1-1 and Table 2-1.

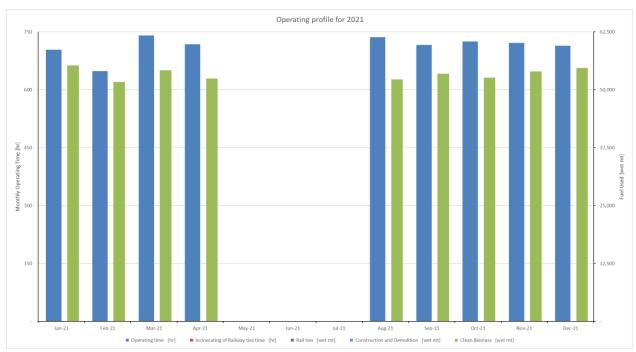


Figure 1-1: Normal Operating time for 2021

As no rail tie material was used as feedstock during the reporting period – Test Regimes Schedule A and D apply.

Corrective and preventative maintenance, as well as calibrations, were performed on the Air Emissions Controls and Continuous Emissions Monitoring System (CEMS) equipment of the Authorized Works during the reporting period.

2 Monthly Operating Hours

Figure 1-1 and Table 2-1 shows the operating time for each month.

Table 2-1: Operating hours per month

	Operating time ¹	Incinerating of Railway ties time ²
	hr	hr
Jan-2021	703	0
Feb-2021	648	0
Mar-2021	740	0
Apr-2021	718	0
May-2021	-	-
Jun-2021	-	-
Jul-2021	-	-
Aug-2021	736	0
Sep-2021	716	0
Oct-2021	725	0
Nov-2021	721	0
Dec-2021	714	0
2021 Totals	6,420	0

3 Fuel

The fuel usage for the reporting period is shown in Figure 1-1 and Table 3-1.

Table 3-1: Monthly and Annual Amounts of Fuel

	Rail ties	Construction and Demolition	Clean Biomass
	wet mt	wet mt	wet mt
Jan-2021	0	0	55,220
Feb-2021	0	0	51,646
Mar-2021	0	0	54,214
Apr-2021	0	0	52,374
May-2021	0	0	-
Jun-2021	0	0	-
Jul-2021	0	0	-
Aug-2021	0	0	52,240
Sep-2021	0	0	53,423
Oct-2021	0	0	52,558
Nov-2021	0	0	53,921
Dec-2021	0	0	54,662
2021 Totals	0	0	480,258

¹ Operating time for Figure 1-1 and Table 2-1 is taken as combusting-biomass and breaker-closed time

² Number of hours incinerating rail ties or greater than 1% construction and demolition waste

4 Continuous Emissions Monitoring

4.1 Sulphur Oxides

No rail ties or greater than 1% C&D waste was used as feedstock during the reporting period, therefore no monitoring for Sulphur Oxides was required or conducted.

4.2 Nitrogen Oxides

The maximum hourly Nitrogen Oxides (NO_x) as Nitrogen Dioxide (NO_2) per month and average for the month at 8% O_2 is show Table 4-1. The Permitted hourly average is 320 mg/m³ at 8% O_2 [1].

Table 4-1: Maximum hourly NO _x as NO ₂ per month and a	average for the Month
--	-----------------------

	Maximum Hourly Average	Monthly Average
	mg/m³	mg/m³
Jan-2021	278	232
Feb-2021	279	228
Mar-2021	261	212
Apr-2021	257	218
May-2021	-	•
Jun-2021	-	•
Jul-2021	-	•
Aug-2021	253	221
Sep-2021	268	220
Oct-2021	257	215
Nov-2021	290	255
Dec-2021	315	253

The average NO_x emissions for the year was 228 mg/m³ at 8% O_2 . The maximum hourly average for the year is 315 mg/m³ at 8% O_2 .

4.3 Hydrochloric Acid

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring for Hydrochloric Acid was required or conducted.

4.4 Combustion Temperature

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring of Combustion Temperature was required or conducted.

5 Discrete Monitoring

5.1 Air Emissions Stack Test

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule A applies.

The permitted levels under Schedule A [1] is stated in Table 5-1.

A. Lanfranco & Associates Inc was retained to perform an Emission Compliance Survey and Monitoring Report, as per Schedule A of the Permit. The Triplicate test average results for the listed parameters for the Main Stack on October 27, 2021 are summarised in Table 5-1. The complete report can be found in Appendix A – Stack Particulate Test.

Table 5-1: Schedule A Discrete Monitoring Results

Parameter	Test Average	Permit Limits
Rate of Discharge (m³/s)	93	110
Particulate (mg/m³ @ 8% O₂)	2.9	20

Both parameters measure is below permitted levels.

The average steam flow during the Stack Test on October 27 was 603.1 klb/hr (76.0 kg/s). This meets the Operating Conditions requirements stipulated in section 3.3 of the Permit.

5.2 Ash Testing

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule D applies.

The permitted levels as per Schedule D [1] is stated in Table 5-2.

Bureau Veritas was commissioned to perform ash analysis on a single ash sample collected before ash conditioning during normal operation. The results from the test is summarised in Table 5-2. The complete reports can be found in Appendix B - Ash Analysis Report.

Table 5-2: Schedule D Discrete Monitoring Results

Parameter	Average	Permitted Limits [2]
Arsenic (mg/L)	<0.1	2.5
Barium (mg/L)	2.5	100
Boron (mg/L)	<0.1	500
Cadmium (mg/L)	<0.1	0.5
Chromium (mg/L)	<0.1	5
Copper (mg/L)	<0.1	100
Lead (mg/L)	<0.1	5
Mercury (mg/L)	<0.0020	0.1
Selenium (mg/L)	<0.1	1
Silver (mg/L)	<0.01	5
Uranium (mg/L)	<0.1	10
Zinc (mg/L)	<0.1	500
Dioxin/Furan TEQ (ppb)	0.020	100
Polycyclic Aromatic Hydrocarbon TEQ (ppm)	0.026	100

Parameter values marked with a less-than sign (<) are below the Reportable Detection Limit.

All the parameters measured were well below the values stipulated in the Hazardous Waste Regulation [2].

The average steam flow when the Ash Test sample was collected on October 27 was 603.1 klb/hr (76.0 kg/s). This meets the Operating Conditions requirements stipulated in section 3.3 of the Permit.

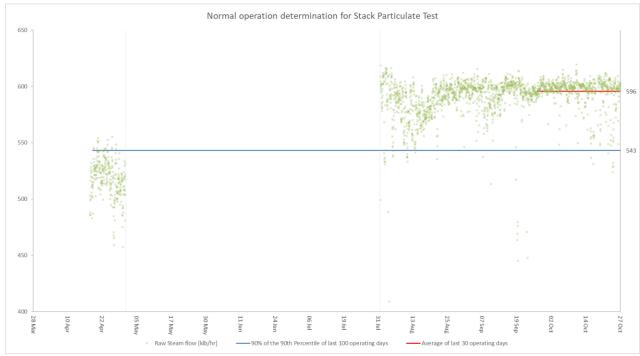
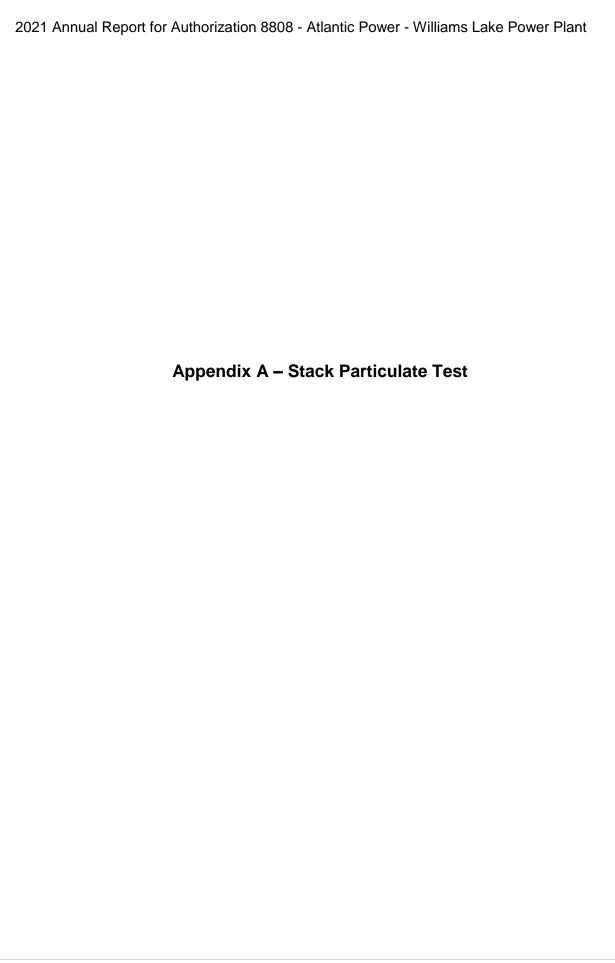
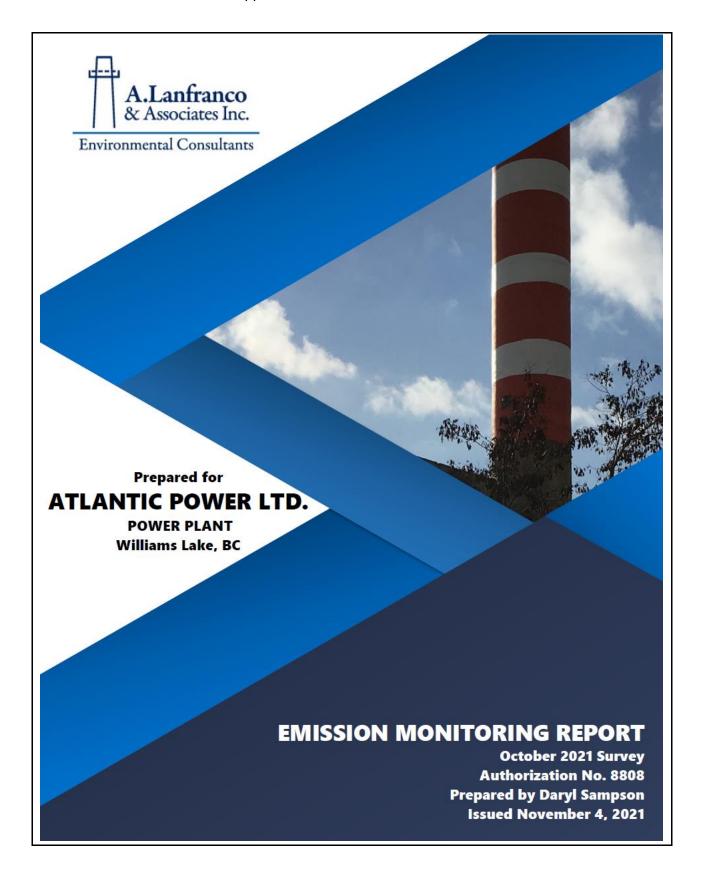


Figure 5-1: Hourly Average Steam Production data for October 27, 2021 Discrete Testing

6 Exceedances


No exceedances were recorded under normal operating conditions during the reporting period.


7 References

- [1] Ministry of Environment, "Permit 8808 Amended 18 September 2019," Environment Canada, Williams Lake, 2016.
- [2] Ministry of Attorney General, Hazardous Waste Regulation BC Reg 63/88, Victoria: Queens Printer, 1988.

Appendices

Appendix A – Stack Particulate Test	8
Appendix B - Ash Analysis	49

TABLE OF CONTENTS

SUM	MMARY	1
1	TEST PROGRAM ORGANIZATION and INTRODUCTION	2
2	PROCESS DESCRIPTION	3
3	METHODOLOGY	3
3.	1 Sampling Techniques	3
3.	2 Analytical Techniques	7
4	RESULTS	7
5	DISCUSSION OF RESULTS	10

APPENDICES

Appendix 1 - Computer Outputs of Measured and Calculated Data

Appendix 2 - Calculations

Appendix 3 - Field Data Sheets

Appendix 4 - Calibration Data and Certifications

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

SUMMARY

The following table presents the triplicate test average results for the listed parameters for the Biomass fuelled boiler stack on October 27, 2021.

Parameter	Average	Permit Limits
	•	
Particulate (mg/Sm ³)	3.5	
Particulate (mg/Sm ³ @ 8% O ₂)	2.9	20
Particulate (kg/hr.)	1.2	
Flowrate (Sm ³ /min)	5580	
Flowrate (Sm ³ /sec)	93.0	110
O ₂ (vol % dry)	5.0	
CO ₂ (vol % dry)	16.0	

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

The 3-run average boiler stack results for total particulate (2.9 mg/Sm³ @ 8% O₂) is marginally lower than the previous results from March 2020 (3.1 mg/Sm³ @ 8% O₂) and is well below the permit limit. The 3-run average flowrate on the boiler stack for this survey is also slightly lower than that from March 2020 (93 compared to 97.7m³/min) and is also below the permitted limit. The differences do not represent a significant change from previous surveys.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual. The field crew consisted of:

Mr. D. Sampson (certified), Mr. J. Ching, and Mr. S. Baker.

The report was prepared by Mr. D. Sampson using reporting principles and guidelines generally acceptable to BC MOE.

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE approved reference methods for the parameters investigated.

Report reviewed by:

Mark Lanfranco, CST Chief Operations Officer | Owner

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

SUMMARY

The following table presents the triplicate test average results for the listed parameters for the Biomass fuelled boiler stack on October 27, 2021.

Parameter	Average	Permit Limits
	•	
Particulate (mg/Sm ³)	3.5	
Particulate (mg/Sm³ @ 8% O ₂)	2.9	20
Particulate (kg/hr.)	1.2	
Flowrate (Sm ³ /min)	5580	
Flowrate (Sm ³ /sec)	93.0	110
O ₂ (vol % dry)	5.0	
CO ₂ (vol % dry)	16.0	

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

The 3-run average boiler stack results for total particulate (2.9 mg/Sm³ @ 8% O₂) is marginally lower than the previous results from March 2020 (3.1 mg/Sm³ @ 8% O₂) and is well below the permit limit. The 3-run average flowrate on the boiler stack for this survey is also slightly lower than that from March 2020 (93 compared to 97.7m³/min) and is also below the permitted limit. The differences do not represent a significant change from previous surveys.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

1 TEST PROGRAM ORGANIZATION and INTRODUCTION

Plant Testing Coordinator:

Mr. Jacob Steyl

Maintenance Manager

4455 Mackenzie Avenue North

Williams Lake, B.C. Canada V2G 5E8 Email: steyl@atlanticpower.com

Project Manager/Sampling Mr. Mark Lanfranco
Contractor: President | Owner

President | Owner A. Lanfranco and Associates Inc.

101-9488 189 St Surrey, B.C. Canada V4N 4W7

Email: mark.lanfranco@alanfranco.com

Sampling Crew: Mr. D. Sampson - A. Lanfranco and Associates Inc.

Mr. J. Ching - A. Lanfranco and Associates Inc. Mr. S. Baker - A. Lanfranco and Associates Inc.

Atlantic Power Corporation commissioned A. Lanfranco & Associates Inc. to conduct an emission survey at their Power Plant in Williams Lake, BC. Emission tests were conducted on a wastewood fired co-generation power plant to meet the air monitoring requirement prescribed by British Columbia Ministry of Environment (BC MOE) Permit PA-8808.

On October 27, 2021, triplicate emission tests were performed for the following parameters:

- · particulate concentration and emission rate
- discharge rate (flow rate)
- gas composition (CO₂, O₂ and moisture)

A. Lanfranco and Associates was responsible for the gravimetric analysis for this survey. Justin Ching, the lab manager for ALAA can be reached at 604-881-2582 or 672-514-9350.

This report contains details of the test results and methodologies utilized.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

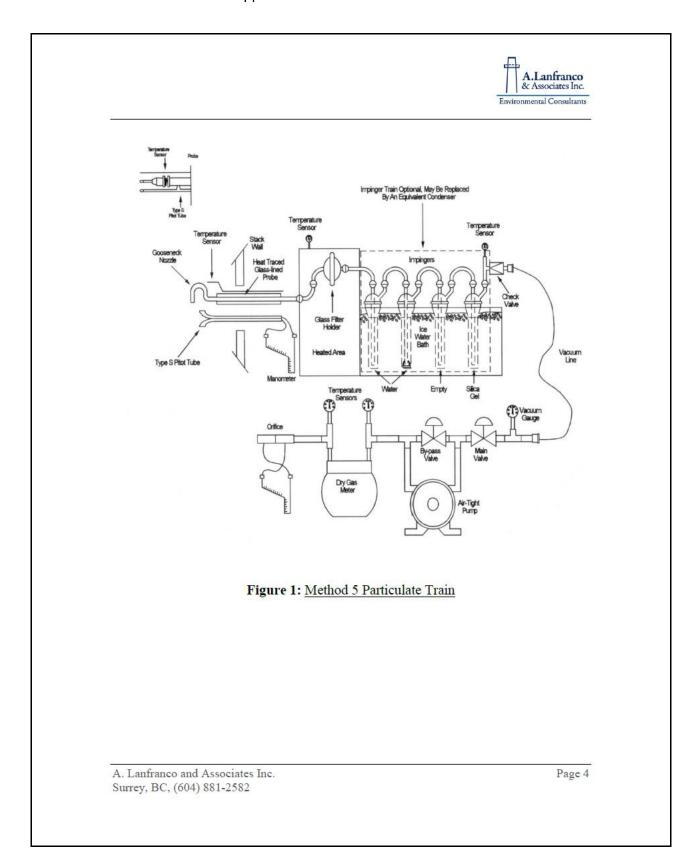
2 PROCESS DESCRIPTION

The process under investigation during this survey is a wood fuelled Boiler discharging through a 3.5-meter stack. This process discharges to atmosphere following emission control by multi-clones, and a five-field electrostatic precipitator.

Operational data is shown in Table 3 in the results section.

3 METHODOLOGY

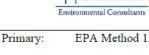
The sampling and analytical methods used throughout this survey conform to the procedures outlined in the BC source testing code and the BC air analytical manual. The following table shows the methodology followed.

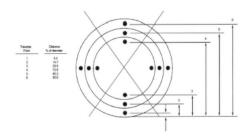

<u>Parameter</u>	Reference Method
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse Points
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Gas molecular weight (O ₂ /CO ₂)	EPA Method 3 Gas Analysis for the Determination of Dry Molecular Weight
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content
Particulate Matter	EPA Method 5 Determination of Particulate Matter Emissions from Stationary Sources

3.1 Sampling Techniques

Sampling of particulate (EPA Method 5) from the Main Stack was conducted using CAE and Apex sampling trains equipped with heated filter assemblies and a heated four-foot probe (Fig. 1). The impinger sections of the sampling trains were charged with de-ionized water for moisture determination. Cyclones were not used as part of the sampling apparatus.

The stack was checked for cyclonic flow using methods outlined in the source test code. No cyclonic flow condition existed.


A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582



Sampling Site and Traverse Points

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas. At Williams Lake, four traverses of 3 points for a total of 12 points were measured per test.

Figure 2. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Each point (equal area method) was sampled for 5 minutes (figure 4/4a) resulting in final sample volumes of about 1.1-1.13 cubic meters.

Stack Gas Velocity and Volumetric Flow Rate

The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an S-type pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to occur. Stack gas volumetric flow rate is determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

Primary: EPA Method 2

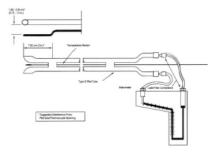


Figure 3. Type S Pitot Tube Manometer

Assembly

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

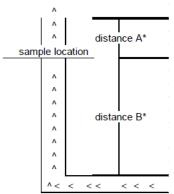
Figure - 4 Location of Traverse Points in Circular Stacks

(inches from inside wall to traverse point)

Client Stack I.D.: Atlantic Power

 Diameter (inches)
 138

 Total Points
 12


 # of Ports Used
 4

 Points / Traverse
 3

Diameters Upstream: > 2

Diameters Downstream: > 8

Point	Distance from Wall
1	6.1
2	20.1
3	40.8

* distance A: duct diameters upstream from flow disturbance * distance B: duct diameters downstream from flow disturbance

< < < : flow direction

Figure 4a <u>Location of Traverse Points in Circular Stacks</u>

(percent of diameter from inside wall to traverse point)

Traverse Point Number on a	<u>Numb</u>	Number of Traverse Points on a Diameter				
Diameter	2	4	6	8	10	12
1	14.6%	6.7%	4.4%	3.2%	2.6%	2.1%
2	85.4%	25.0%	14.6%	10.5%	8.2%	6.7%
3		75.0%	29.6%	19.4%	14.6%	11.8%
4		93.3%	70.4%	32.3%	22.6%	17.7%
5			85.4%	67.7%	34.2%	25.0%
6			95.6%	80.6%	65.8%	35.6%
7				89.5%	77.4%	64.4%
8				96.8%	85.4%	75.0%
9					91.8%	82.3%
10					97.4%	88.2%
11						93.3%
12						97.9%

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

A.Lanfranco & Associates Inc.

Molecular Weight by Gas Analysis

Primary:

EPA Method 3/3a

An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Moisture Content

Primary:

EPA Method 4

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

3.2 Analytical Techniques

Gravimetric analysis of the particulate samples was conducted by A. Lanfranco and Associates Inc. at their Surrey laboratory. All filters were conditioned by 105 °C drying, desiccation for 24 hours, and weighing of the particulate.

Probe washings were evaporated to dryness in porcelain dishes, desiccated for 24 hours and weighed. Blanks were carried through all procedures.

4 RESULTS

The results of the particulate and stack parameters were calculated using a computer program consistent with reporting requirements of BC MOE. Standard conditions used were 20 °C and 101.325 kPa (dry). Particulate concentrations were corrected to 8% O₂.

The "actual" flowrates results are volumetric flowrates at stack conditions. Detailed test results are presented in Table 1. Supporting data is presented in Table 2 and the Appendices. Calculations are presented in Appendix 2.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE 1: MAIN STACK EMISSION RESULTS

Parameter	Test 1	Test 2	Test 3	Average
Test Date	27-Oct-21	27-Oct-21	27-Oct-21	
Test Time	10:15 - 11:29	11:47 - 12:56	13:12 - 14:16	
Duration (minutes)	60	60	60	60
Particulate (mg/Sm³)	3.8	4.0	2.8	3.5
Particulate (mg/Sm ³ @ 8% O ₂)	3.2	3.2	2.2	2.9
Particulate (Kg/hr)	1.3	1.3	0.9	1.2
Particulate (Kg/day)	31.0	31.9	22.1	28.3
Flowrate (Sm ³ /min)	5630	5571	5551	5584
Flowrate (Sm ³ /sec)	93.8	92.8	92.5	93.1
Flowrate (Am³/min)	11064	11032	11017	11038
Temperature (°C)	161	161	160	161
O2 (vol % dry)	5.6	4.9	4.5	5.0
CO ₂ (vol % dry)	15.9	16.0	16.1	16.0
H ₂ O (vol %)	17.6	18.3	18.5	18.1
Isokinetic Variation (%)	97.6	102.4	101.6	100.5

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE 2: GRAVIMETRIC RESULTS

	Initial (g)	Final (g)	Net (g)	Blank Corrected Net (g)
Atlantic Power - Main Stack				
Filters				
Run 1	0.3479	0.3498	0.0019	0.0018
Run 2	0.3478	0.3487	0.0009	0.0008
Run 3	0.3460	0.3470	0.0010	0.0009
Blank	0.3454	0.3455	0.0001	
Probe Washes				
Run 1	117.7409	117.7436	0.0027	0.0021
Run 2	102.6721	102.6761	0.0040	0.0034
Run 3	112.2302	112.2328	0.0026	0.0020
Blank	114.3514	114.3520	0.0006	
Silica Gels				
Run 1	200.0	208.5	8.5	8.5
Run 2	200.0	207.6	7.6	7.6
Run 3	200.0	206.4	6.4	6.4

TABLE 3: OPERATING CONDITIONS

Steam Flow (K lbs./hour)

Boiler Stack	,	610

The steam flow is 16% greater than during testing in 2020 and is representative of normal operations.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

5 DISCUSSION OF RESULTS

The average particulate result for this survey was 2.9 mg/Sm³ @ 8% O₂ and is well below the permitted level of 20 mg/Sm³ @ 8% O₂. The results for particulate matter are quite comparable to previous results from this source.

The average flow rate measurement of 93.0 Sm³/sec was also within the allowable limit of 110.0 Sm³/sec.

There were no problems encountered in sample collection or analysis. Samples were collected isokinetically at all points and sampling equipment was operated in a normal steady manner during testing. The test results, therefore, are considered to be an accurate representation of emission characteristics for the process conditions maintained on the test date.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

APPENDIX 1 COMPUTER OUTPUTS OF MEASURED AND CALCULATED DATA	

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:27-Oct-21Jobsite:Williams Lake, B.C.Run:1 - ParticulateSource:Main StackRun Time:10:15 - 11:29

Particulate Concentration: 3.8 mg/dscm 0.0017 gr/dscf

1.9 mg/Acm 0.0009 gr/Acf

3.2 mg/dscm (@ 8% O2) 0.0014 gr/dscf (@ 8% O2)

Emission Rate: 1.29 Kg/hr 2.850 lb/hr

Sample Gas Volume: 1.0193 dscm 35.996 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 97.6 %

Flue Gas Characteristics

Moisture: 17.61 %

Temperature 160.7 °C 321.3 °F

Flow 5630.2 dscm/min 198830 dscf/min 93.84 dscm/sec 3313.8 dscf/sec

93.84 dscm/sec 3313.8 dsct/sec 11064.3 Acm/min 390736 Acf/min

Velocity 19.110 m/sec 62.70 f/sec

Gas Analysis 5.63 % O₂ 15.88 % CO₂

30.765 Mol. Wt (g/gmole) Dry $\,$ 28.517 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 27-Oct-21 Williams Lake, B.C. Jobsite: Run: 1 - Particulate Source: Main Stack Run Time: 10:15 - 11:29

Control Unit (Y)	1.0068	Gas Analysis (Vol. %):			
Nozzle Diameter (in.)	0.2427	CO_2	O_2		
Pitot Factor	0.8437	15.50	5.50		
Baro. Press. (in. Hg)	27.39	15.50	6.00		
Static Press. (in. H ₂ O)	-0.51	16.00	5.50		
Stack Height (ft)	200	16.50	5.50		
Stack Diameter (in.)	138.0	$Average = \underline{15.88}$	5.63		
Stack Area (sq.ft.)	103.869				

Total Gain (grams) 163.5

Condensate Collection:

Impinger 1 (grams) 115.0 Impinger 2 (grams) 35.0 Impinger 3 (grams)

Impinger 4 (grams)

5.0

8.5

5.0 Collection: 8.0

5.0

Minutes Per Reading

Minutes Per Point

Port Length (inches)

Filter (grams) 0.0018 0.0021 Washings (grams) 0.0000 Impinger (grams) Total (grams) 0.0039

Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Dry Ga Inlet	s Temperature Outlet	Stack	Wall Dist.	Isokin.
		(min.)	(ft')	(in. H ₂ O)	(in. H ₂ O)	(°F)	(°F)	(°F)	(in.)	(%)
		0.0	880.518							
1	1	5.0	884.300	0.990	2.08	78	78	322	6.1	97.7
	2	10.0	888.030	0.960	2.02	79	79	323	20.1	97.7
	3	15.0	891.480	0.810	1.71	82	82	321	40.8	97.7
		0.0	891.480							
2	1	5.0	894.610	0.660	1.41	86	86	322	6.1	97.4
	2	10.0	897.880	0.720	1.53	86	86	322	20.1	97.5
	3	15.0	901.140	0.710	1.52	88	88	321	40.8	97.4
		0.0	901.140							
3	1	5.0	904.100	0.580	1.25	90	90	321	6.1	97.5
	2	10.0	907.090	0.590	1.27	92	92	322	20.1	97.3
	3	15.0	909.990	0.550	1.19	93	93	322	40.8	97.6
		0.0	909.990							
4	1	5.0	913.540	0.820	1.77	95	95	322	6.1	97.6
	2	10.0	917.380	0.950	2.07	97	97	321	20.1	97.8
	3	15.0	920.926	0.800	1.75	98	98	317	40.8	97.9
			Average:	0.762	1.631	88.7	88.7	321.3		97.6

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:27-Oct-21Jobsite:Williams Lake, B.C.Run:2 - ParticulateSource:Main StackRun Time:11:47 - 12:56

Particulate Concentration: 4.0 mg/dscm 0.0017 gr/dscf

2.0 mg/Acm 0.0009 gr/Acf

3.2 mg/dscm (@ 8% O2) 0.0014 gr/dscf (@ 8% O2)

Emission Rate: 1.33 Kg/hr 2.926 lb/hr

Sample Gas Volume: 1.0577 dscm 37.354 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 102.4 %

Flue Gas Characteristics

Moisture: 18.29 %

Temperature 160.5 °C 320.9 °F

Flow 5570.7 dscm/min 196730 dscf/min 92.85 dscm/sec 3278.8 dscf/sec

92.85 dscm/sec 3278.8 dscf/sec 11031.8 Acm/min 389587 Acf/min

Velocity 19.054 m/sec 62.51 f/sec

Gas Analysis 4.88 % O₂ 16.00 % CO₂

30.755 Mol. Wt (g/gmole) Dry $28.422 \hspace{1mm} Mol. \hspace{1mm} Wt \hspace{1mm} (g/gmole) \hspace{1mm} Wet$

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 27-Oct-21 Jobsite: Williams Lake, B.C. Run: 2 - Particulate Source: Main Stack Run Time: 11:47 - 12:56

Control Unit (Y)	1.0068	Gas Analysis (Vol. %):
Nozzle Diameter (in.)	0.2427	CO_2	O_2
Pitot Factor	0.8437	16.00	5.00
Baro. Press. (in. Hg)	27.39	16.00	5.00
Static Press. (in. H ₂ O)	-0.51	16.00	5.00
Stack Height (ft)	200	16.00	4.50
Stack Diameter (in.)	138.0	$Average = \underline{16.00}$	4.88
Stack Area (sq.ft.)	103.869		

Total Gain (grams) 177.6

Impinger 4 (grams)

Impinger 1 (grams) 135.0 Impinger 2 (grams) 30.0 Impinger 3 (grams)

5.0

7.6

Condensate Collection:

Minutes Per Point 5.0 Collection: Port Length (inches) 8.0

5.0

Minutes Per Reading

Filter (grams) 0.0008 0.0034 Washings (grams) 0.0000 Impinger (grams) Total (grams) 0.0042

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	s Temperatu Outlet (°F)	re Stack (°F)	Wall Dist. (in.)	Isokin. (%)
		0.0	921.235							
1	1	5.0	925.110	0.880	2.09	101	101	322	6.1	102.5
	2	10.0	929.120	0.950	2.25	100	100	323	20.1	102.4
	3	15.0	932.790	0.790	1.88	102	102	323	40.8	102.3
		0.0	932.790							
2	1	5.0	936.010	0.600	1.44	104	104	317	6.1	102.1
	2	10.0	939.270	0.610	1.47	106	106	316	20.1	102.1
	3	15.0	942.380	0.550	1.33	108	108	318	40.8	102.3
		0.0	942.380							
3	1	5.0	945.440	0.540	1.03	105	105	317	6.1	102.0
	2	10.0	948.790	0.640	1.55	105	105	324	20.1	103.2
	3	15.0	952.260	0.700	1.67	104	104	323	40.8	102.3
		0.0	952.260							
4	1	5.0	956.390	1.000	2.38	102	102	323	6.1	102.4
	2	10.0	960.400	0.950	2.24	99	99	323	20.1	102.6
	3	15.0	964.214	0.870	2.04	95	95	322	40.8	102.6
·										
•			Average:	0.757	1.781	102.6	102.6	320.9		102.4

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:27-Oct-21Jobsite:Williams Lake, B.C.Run:3 - ParticulateSource:Main StackRun Time:13:12 - 14:16

Particulate Concentration: 2.8 mg/dscm 0.0012 gr/dscf

1.4 mg/Acm 0.0006 gr/Acf

2.2 mg/dscm (@ 8% O2) 0.0010 gr/dscf (@ 8% O2)

Emission Rate: 0.92 Kg/hr 2.033 lb/hr

Sample Gas Volume: 1.0471 dscm 36.977 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 101.6 %

Flue Gas Characteristics

Moisture: 18.51 %

Temperature 160.3 °C 320.6 °F

Flow 5550.6 dscm/min 196018 dscf/min 92.51 dscm/sec 3267.0 dscf/sec

92.51 dscm/sec 3267.0 dscf/sec 11016.6 Acm/min 389052 Acf/min

Velocity 19.028 m/sec 62.43 f/sec

Gas Analysis 4.50 % O₂ 16.13 % CO₂

30.760 Mol. Wt (g/gmole) Dry $\,$ 28.399 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 27-Oct-21 Jobsite: Williams Lake, B.C. Run: 3 - Particulate Source: Main Stack Run Time: 13:12 - 14:16

Control Unit (Y)	1.0068	Gas Analysis (Vol. %):			
Nozzle Diameter (in.)	0.2427	CO_2	O_2		
Pitot Factor	0.8437	15.50	4.50		
Baro. Press. (in. Hg)	27.39	16.00	4.50		
Static Press. (in. H ₂ O)	-0.51	16.00	5.00		
Stack Height (ft)	200	17.00	4.00		
Stack Diameter (in.)	138.0	Average = 16.13	4.50		
Stack Area (sq.ft.)	103.869				

Total Gain (grams) 178.4

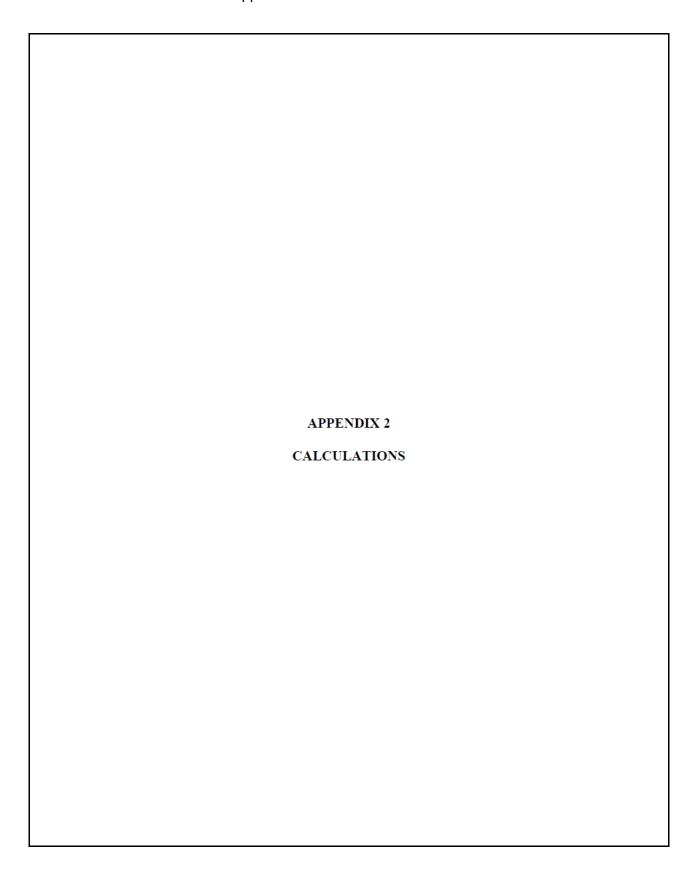
Impinger 4 (grams)

Impinger 1 (grams) 150.0 Impinger 2 (grams) 20.0 Impinger 3 (grams)

2.0

6.4

Condensate Collection:


Minutes Per Point 5.0 Collection: Port Length (inches) 8.0

5.0

Minutes Per Reading

Filter (grams) 0.0009 0.0020Washings (grams) 0.0000 Impinger (grams) Total (grams) 0.0029

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	as Temperatu Outlet (°F)	re Stack (°F)	Wall Dist. (in.)	Isokin. (%)
		0.0	965.127							
1	1	5.0	969.000	0.980	2.19	76	76	321	6.1	101.8
	2	10.0	972.780	0.940	2.09	74	74	321	20.1	101.8
	3	15.0	976.370	0.850	1.89	73	73	320	40.8	101.8
		0.0	976.370							
2	1	5.0	979.430	0.620	1.38	73	73	320	6.1	101.4
	2	10.0	982.680	0.700	1.55	72	72	319	20.1	101.5
	3	15.0	985.980	0.720	1.60	72	72	319	40.8	101.7
		0.0	985.980							
3	1	5.0	988.730	0.500	1.11	73	73	321	6.1	101.5
	2	10.0	991.650	0.560	1.25	75	75	321	20.1	101.5
	3	15.0	994.540	0.550	1.22	74	74	321	40.8	101.5
		0.0	994.540							
4	1	5.0	998.240	0.900	2.00	74	74	321	6.1	101.8
·	2	10.0	1002.050	0.960	2.13	73	73	321	20.1	101.7
	3	15.0	1005.483	0.780	1.73	73	73	322	40.8	101.7
			Average:	0.755	1.678	73.5	73.5	320.6		101.6

Appendix 2 Calculations

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-9 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 11-25 were used to sample within the 100 ± 10% isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 26-28 were used to calculate the volumetric flowrate of the stack flue gas.

A2.1 Contaminant Concentration Calculations

Contaminant Concentration Calculations
$$c = \frac{w}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 5
$$V_{samp} = V_{final} - V_{init}$$
 Equation 6
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}, where \ n = the \ number \ of \ points$$
 Equation 8
$$\% O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% O_{2i}, where \ n = the \ number \ of \ O_2 \ measurements$$
 Equation 9
$$\% CO_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% CO_{2i}, where \ n = the \ number \ of \ CO_2 \ measurements$$
 Equation 10

Where,

= Contaminant concentration C

= Contaminant mass m

= Net analytical mass (mg, ng, or μg) m_i

Appendix 2 Calculations

= Analytical mass (mg, ng, or µg) Mana,i = Blank analytical mass (mg, ng, or μg) m_{blank} = Total particulate mass (mg) m_{part} = Net particulate gain from filter (mg) *Mfilter* = Net particulate gain from probe wash (mg) m_{pw} = Sample volume at standard conditions (ft3) $V_{std(imp)}$ V_{std} = Sample volume at standard conditions (m³) Vsamp = Sample volume at actual conditions (ft³) = Final gas meter reading (ft³) V_{final} V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) = Gas meter temperature (°F) T_m = Average gas meter temperature (°F) $T_{m(ave)}$ P_{m} = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg) = Average of individual point orifice pressures (inches of H₂O) ΔH_{ave} = Individual recorded point orifice pressures (inches of H₂O) $\Delta H_{i(act)}$ $%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis) $%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate. For this survey, if the analysis came back with a non-detect analysis, $\frac{1}{2}$ of the detection limit was used as the contaminant mass.

A.Lanfranco & Associates Inc.

Appendix 2 Calculations

A2.2 Isokinetic Variation Calculations

$$\Delta H_i = \frac{2.62 \times 10^7 \times c_p \times A_n \times (1 - B_{wo}) \times M_D \times (T_m + 459.67) \times \Delta p_i}{k_o \times M_w \times (T_{Stk} + 459.67)} \qquad \text{Equation 11} \\ k_o \times M_w \times (T_{Stk} + 459.67) \qquad \qquad \text{Equation 12} \\ R_m = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{(T_{stk_i} + 459.67)}{M_w \times P_B}} \times 60 \times A_n \times \frac{(T_{m_i} + 459.67) \times (1 - B_{wo})}{(T_{stk_i} + 459.67) \times y} \qquad \text{Equation 13} \\ M_m = M_D \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation 14} \\ M_D = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times (100 - \% CO_2 - \% O_2) \qquad \qquad \text{Equation 15} \\ T_{Stk} = \frac{1}{n} \sum_{i=1}^{n} T_{Stk_i}, where \ n = the \ number \ of \ points \qquad \qquad \text{Equation 16} \\ B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(imp)}} \qquad \qquad \text{Equation 17} \\ V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation 18} \\ Iso = \frac{1}{n} \sum_{i=1}^{n} Iso_i, where \ n = the \ number \ of \ points \qquad \qquad \text{Equation 19} \\ Iso_i = \frac{v_{nsi}}{v_i} \qquad \qquad \qquad \text{Equation 20} \\ v_i = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{(T_{Stk_i} + 459.67)}{(P_{Stk} \times M_W)}} \qquad \qquad \text{Equation 21} \\ v_{nsi} = \frac{(V_i - V_{i-1}) \times y \times (T_{Stk_i} + 459.67) \times (P_B + \frac{\Delta H_{i(act)}}{13.6})}{A_n \times t_i \times 60 \times (T_{m(i)} + 459.67) \times P_{stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation 23} \\ \text{Equation 23}$$

Appendix 2 Calculations

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
, where $n =$ the number of points

Equation 24

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 25

Where,

 $A_n = Nozzle area (ft^2)$

d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H₂O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H_2O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_g) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

%CO2 = Stack gas carbon dioxide concentration (% dry basis)
 %O2 = Stack gas oxygen concentration (% dry basis)
 Bwo = Stack gas water vapour, proportion by volume

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

(ft³)

 V_{gain} = Condensate gain of impinger contents (mL)

 P_{std} = Standard pressure (29.92 inches of Hg)

 V_{stk} = Average flue gas velocity (ft/sec)

 V_{i} = Individual point flue gas velocity (ft/sec)

 V_{nz} = Average velocity at nozzle(ft/sec)

 I_{SOi} = Individual point isokinetic variation (%)

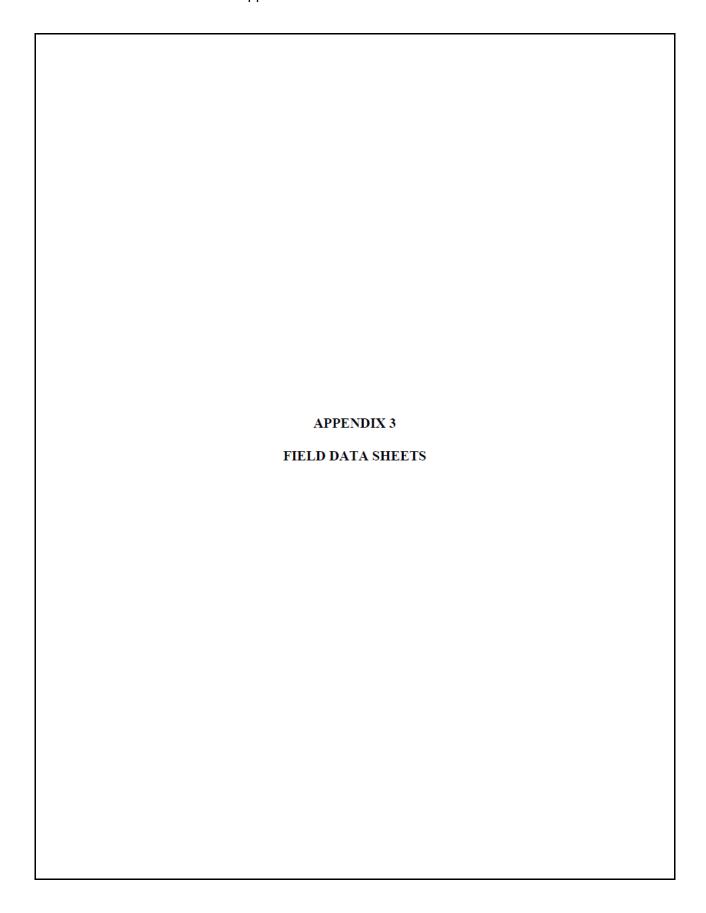
Appendix 2 Calculations

A2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
 Equation 26

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 27

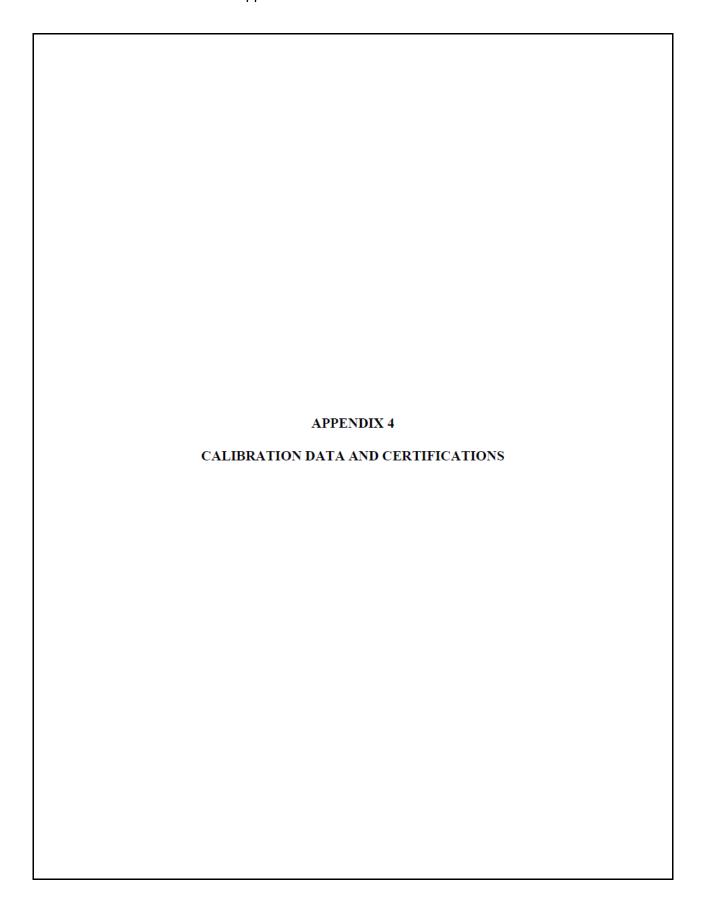
$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 28


Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)


d = Diameter of stack (inches)

CLIE	NT Atlanti	C. Power			PROBE 5	324 00	DIAME	TER, IN.O.	2427	IMPINGER		FINAL (mL)	TOTA	L GA
PAR	AMETER / RUN	No Porticul ate/HI	Cl Run I		PORT LEN	GTH &	. H2O - O.			Imp. #1 Imp. #2 Imp. #3	100	135	115 35	
BAR	OPERATOR: 5 4 Chas CONTROL UNIT JUI Y 1.0068 BAROMETRIC PRESSURE, IN. Hg 27.59 ASSIMED MOISTURE BW 21.56			STACK DIAMETER STACK HEIGHT INITIAL LEAK TEST 0 002				Imp. #4 Imp. #5 Imp. #6 Upstream D	2co iameters	710	10	=		
ASS	ASSUMED MOISTURE, BW			FINAL LEA	K TEST 0				Downstream				Ξ	
Poi	Clock Time	880518	Pitot ΔP IN. H ₂ O	Orifice ΔH IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	Pump Vac. IN. Hg	CO ₂ Vol. %	O ₂ Vol. %		
3		884,30 888,03 891,48	0.96	2.09	73 79 82	327 323 331	263	255	55	5	15.5	5.5		
1 2		874.61	0.66	1.41	96 86	322	342	256	55	4	15.5	6		
3		901.14	0.71	1.52	90	321	257	261	57	4	16.0	5.5		F
B	5	907.09	0.59	1:35	92	327	255	957	52	4	16.7	Diff		
3	11:29	917.38	0.32	1.77	95	322 371 317	259	259	54	4	16,5	5.5		
	End of test	1 40.170	0.30	11.12			- 10							E
			-											E
														E

CLIENT	Atlat	R Power			NOZZLE S	5524	DIAME	TER, IN. C	2427	IMPINGER		FINAL	TOTA	_
SOURC	E FAME	V Stack							VOLUMES Imp. #1	(mL)	(mL)	135	nL)	
PARAM	ETER / RUN'N	y Stack	HC12		PORT LENGTH 84				Imp. #2	100	130	30		
DATE	Or 1 27	2021	1604			STATIC PRESSURE, IN. H2O -(), 5)				Imp. #3	0	15	15	
CONTR	TOR: JUST	stn ching			STACK DIA			- 3		Imp. #4	300	210	10	
CONTR	NTROL UNIT 3 1 14 Y 1,0069			STACK HE	GHI				Imp. #5					
BARON	BAROMETRIC PRESSURE IN Ha 17 39			INITIAL LEA	AK TEST (1.007			Upstream Di	ameters			_	
ASSUM	ASSUMED MOISTURE, BW 2 18%			FINAL LEA		.007			Downstream					
1														
Point	Clock Time	Dry Gas Meter ft	Pitot ΔP IN. H ₂ O	Orifice ΔH	D 0	T	Temperature '			Pump Vac.		rites		
Foint	1147	921.235	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂ Vol. %	O ₂ Vol. %		
1		925.11	0.59	2.09	101	322	245	248	55	5	16	5.0		
2		929.12	0.95	2.25	100	323	265	248	54	1	1.0	3.0		
3		932.79	0.49	1.88	102	323				5				
1		936.01	0.60	1,44	104	317	259	200	54	-	17	~		
2		939,27	8.61	1.47	106	316	V-3-1	260	24	5	16	5.0		
3		942,38	0.55	1.33	108	318	258	258	55	4				
		1,000,000,000												7
1		948,79	0.54	1.30	105	317	259	256	55	4	16	5.0	-	
7		952.26	0.70	1.55	107	323	258	259	56	4				
			0.70	1.61	107	127	470	177	30	7				
1		956.39	1.00	2,38	102	323	256	255	57	6	16	4.5		
1	17.00	960.40	0.95	2,24	99	323			100			-		
3	12:56 Endoftest	964.214	0.87	2.09	95	322	255	257	56	6				
	Lat to Dia					_								
														\vdash
														175
														-
-														
												-		

CLIE	NT Atlantic	Pare			NOZZLE	5524	DIAM	ETER, IN.	22427	IMPINGER		FINAL	TOTA	AL GAI
SOU	RCE LA WEIT	Stack							VOLUMES Imp. #1		(mL)		mL)	
PARA	AMETER / RUN	No Particulate	HC/R3		PORT LENGTH %1				Imp. #1	100	1250	150	-	
OPER	Oct 17 7	FIA CLIAN			STATIC PRESSURE, IN. H2O -0, 51				Imp. #3	10	12	7		
CON	TROL UNIT	114	Y 1.0068		STACK DIAMETER STACK HEIGHT				Imp. #4	700	310	10		
BARC	METRIC PRES	SURE, IN. Hg 77, 3	AH@ 3.13						Imp. #6			i		
ASSL	JMED MOISTUR	RE, BW 1906			FINAL LEA	K TEST	002			Upstream D	Diameters n Diameters			_
					0001			Downstream	ii Diameters			1.4		
Point	Clock Time		Pitot ΔP IN. H ₂ O	Orifice ΔH IN. H ₂ O	Des Con	Charle	Temperature	_		Pump Vac.		rites		
	13:12	965,127	III. IIIO	IN. 1120	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit	IN. Hg	CO ₂ Vol. % -	O ₂ Vol. %		
1		974.00	0.98	2.19	76	7321	245	25	53	6	15.5	4.5		
3		976.37	0.94	1.89	74	321	761	258	55	5				
-								478	7.3					-
1		979.43	0.70	1.38	73	370	259	263	56	4	16,0	4.5		
3		982.68	0.72	1.60	72	319	256	264	57	4				_
-		985.73	0.50	111	Wro.		247		1	,,				
1		991.65	0.56	1.25	73	321	257	360	57	4	16.0	5.0		
3		994.54	0.55	1.77	74	321	250	256	56	.4				
1		998,24	0.90	2.00	74	321	355	259	56	5	17.0	4.0		
3	111-1/	1002.05	0.96	2.13	774	321	1				160	7.0		
1	14:16	1005.483	0.78	173	73	322	257	255	56	5				
-			1											
														_
-														
							-							
							_							

A.Lanfranco & Associates inc.

EPA Method 5 Meter Box Calibration English Meter Box Units, English K' Factor

 Model #:
 JU 14
 Date:
 28-Jun-21

 Serial #:
 0028-030615-1
 Barometro Pressure:
 29.55
 (in. Hg)

 Theoretical Critical Vacuum:
 13.99
 (in. Hg)

IIIIIIII
MPORTANT For valid fiest results, the Adual Vacuum should be 1 to 2 in, Hig greater than the Theoretical Critical Vacuum shown above.
MPORTANT The Critical Onfloe Coefficient, Kr, must be entered in English units, (ft/°3/(deq R;°0.5/(in,Hq)*(min)).

										-CF	RITICAL ORIF	ICE READING	\$\$-	
dH (In H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	initial T inlet (deq F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orffice Serial# (number)	K' Onflice Coefficient (see above)	Actual Vacuum (In Hq)	Am Initial (deg F)	blent Tempera Final (deg F)	ature Average (deg F)
4.10	15.00	22.200	38.323	16.123	92.0	92.0	95.0	95.0	73	0.8185	14.0	101.0	103.0	102.0
2.15	23.00	980.100	997.858	17.758	85.0	85.0	86.0	86.0	63	0.5956	18.5	86.0	97.0	91.5
1.35	15.00	12.900	21.986	9.086	90.0	90.0	92.0	92.0	55	0.4606	19.0	99.0	97.0	98.0
0.78	32.00	998.100	1012.776	14.676	87.0	87.0	90.0	90.0	48	0.3560	20.0	95.0	102.0	98.5
0.39	15.00	38.600	43.355	4.755	95.0	95.0	96.0	96.0	40	0.2408	20.5	103.0	109.0	106.0

		********	***************************************	**************************************	ULTS ****	***************************************	***********	****		
DRY GA	S METER		ORIFICE		- DRY GA	S METER -			ORIFICE	
VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL	CALIBRATI	ON FACTOR Y	CA	LIBRATION FA	CTOR	
Vm(std) (cu ft)	Vm(std) (itters)	Vor(std) (ou ft)	Vcr(std) (liters)	Vcr (cu ft)	Value (number)	Variation (number)	Value (In H2O)	Value (mm H2O)	Variation (In H2O)	Ko (value)
15.390	435.9	15.356	434.9	16.500	0.998	-0.009	2.080	52.84	-0.056	0.669
17.117	484.8	17.296	489.8	18.237	1.010	0.004	2.051	52.10	-0.085	0.667
8.654	245.1	8.672	245.6	9.252	1.002	-0.005	2.157	54.80	0.021	0.656
14.021	397.1	14.293	404.8	15.262	1.019	0.013	2.098	53.29	-0.038	0.655
4.481	126.9	4.502	127.5	4.871	1.005	-0.002	2.294	58.27	0.158	0.636
				Average Y>	1.0068	Average dHg>	2.136	54.3	Average Ko>	0.656

Т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Rei Variation (degF)	suits Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the relia of the reading of the calibration mater to the dry gas mater, exceptible between or included values from the average is +0.02.
For Orthon Calibration Factor 4(thg. the orthon differential pressure in Inches of HOD the equation to 0.75 clim of eir 4.65 F and 3/30 inches of Hig., exceptibile bitment of Individual values from the everage is +0.2.
For Temperature Delivers, the reading must be within 1.5% orderfine collaboration between 1.5% or bear exceptible.

Calibrated by: Scott Ferguson

Pitot Tube Calibration

 Date:
 07-Jul-21
 Temp (R): 530

 Pbar (in.Hg):
 30.01
 Dn (in.): 0.25

Pitot ID:	5A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.090	0.125	19.8	0.8400	0.0052
0.180	0.250	28.0	0.8400	0.0052
0.260	0.350	33.7	0.8533	0.0080
0.420	0.570	42.8	0.8498	0.0046
0.580	0.800	50.3	0.8430	0.0023
	•	Average:	0.8452	0.0051

Pitot ID:	5A-2			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.2	0.8443	0.0037
0.145	0.200	25.2	0.8430	0.0023
0.270	0.380	34.3	0.8345	0.0061
0.360	0.500	39.7	0.8400	0.0006
0.650	0.900	53.3	0.8413	0.0007
	•	Average:	0.8406	0.0027

Pitot ID:	ST 5A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.060	0.085	16.2	0.8318	0.0108
0.180	0.250	28.0	0.8400	0.0025
0.250	0.340	33.1	0.8489	0.0064
0.505	0.700	47.0	0.8409	0.0017
0.680	0.920	54.5	0.8511	0.0086
		Average:	0.8425	0.0060

Pitot ID:	ST 5B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.5	0.8478	0.0012
0.125	0.180	23.4	0.8250	0.0216
0.200	0.280	29.6	0.8367	0.0099
0.360	0.500	39.7	0.8400	0.0066
0.680	0.840	54.5	0.8907	0.0441
		Average:	0.8466	0.0167

Pitot ID:	5A-3			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.040	0.055	13.2	0.8443	0.0023
0.110	0.150	21.9	0.8478	0.0013
0.300	0.410	36.2	0.8468	0.0003
0.460	0.630	44.8	0.8459	0.0006
0.660	0.900	53.7	0.8478	0.0013
		Average:	0.8465	0.0011

Pitot ID:	5A - 4			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.080	0.110	18.7	0.8443	0.0005
0.170	0.230	27.3	0.8511	0.0074
0.280	0.390	35.0	0.8388	0.0049
0.500	0.700	46.7	0.8367	0.0070
0.660	0.900	53.7	0.8478	0.0040
	•	Average:	0.8437	0.0048

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
1 1				
1 1				
1 1				
		Average :		

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average :		

Calibrated by: Michael Goods Signature: Date: July 7, 2021

^{*} Average absolute deviation must not exceed 0.01.

A. LANFRANCO and ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS NOZZLE DIAMETER CALIBRATION FORM Calibrated by: Justin Ching June 28, 2021 Date: Per and Signature: Nozzle I.D. d2 d3 difference average dia. average area (inch) (inch) (inch) (inch) (inch) (ft²) 0.000091 0.1290 0.1300 0.0010 0.1295 0.1295 SS-7 ST05 0.1750 0.1740 0.1750 0.0010 0.1747 0.0001664 0.1720 0.1730 0.1735 0.0015 0.1728 0.0001629 0.0030 0.0001607 0.1700 0.1720 0.1730 0.1717 SS-1 SS-8 0.2050 0.2020 0.2020 0.0030 0.2030 ST11 ST10 0.2050 0.2130 0.2080 0.2080 0.0030 0.2070 0.0002337 0.0020 0.2130 0.2110 0.2123 0.0002459 SS-18 0.2320 0.2300 0.2330 0.0030 0.2317 0.0002927 0.2370 0.2410 ST15 0.2380 0.2360 0.0020 0.2370 0.0003064 SS-2 0.2400 0.2400 0.0010 0.2403 0.0003150 0.2412 0.2414 0.2420 0.2410 0.0010 0.0003178 SS-3 SS-24 0.2410 0.2420 0.2450 0.0040 0.2427 0.0003212 0.2410 0.2470 0.2420 0.2400 0.0020 0.2410 0.0003168 ST30 0.2483 0.2480 0.0030 0.0003364 SS-14 0.2450 0.2450 0.2470 0.0020 0.2457 0.0003292 0.0003464 Α 0.2510 0.2520 0.2530 0.0020 0.2520 ST40 0.0010 0.0004384 SS-30 0.2980 0.3010 0.3000 0.0030 0.2997 0.0004898 0.3040 0.0030 0.0004974 SS-13 0.3010 0.3010 0.3020 0.3020 0.3030 0.3030 0.0010 0.3027 ST60 0.3020 0.3030 0.3040 0.0020 0.3030 0.0005007 0.3150 0.0040 SS-10 0.3110 0.3140 0.3133 0.0005355 0.3280 0.3275 0.0005850 SS-327 0.3260 0.3285 0.0025 0.3390 0.3380 0.0020 0.3380 0.0006231 ST66 0.3370 0.3650 0.3610 0.3610 0.0040 0.3623 0.0007161 ST80 ST75 0.3690 0.3660 0.3670 0.0030 0.3673 0.0007359 ST76 0.3710 0.3720 0.3730 0.0020 0.3720 0.0007548 SS-16 0.3710 0.3750 0.3710 0.0040 0.3723 0.0007561 ST85 0.3980 0.4000 0.4010 0.0030 0.3997 0.0008712 DD 0.4010 0.4020 0.4050 0.0040 0.4027 0.0008843 0.4040 SS-15 0.4040 0.4050 0.0010 0.4043 0.0008917 0.4170 0.4190 0.4160 0.0030 0.4173 0.0009499 SS-11 0.4160 0.4170 0.4200 0.0040 0.4177 0.0009515 0.4900 0.4870 0.4880 0.0030 0.4883 0.0013006 SS-49 0.4960 0.4940 0.4950 0.0020 0.4950 0.0013364 SS-491 0.4910 0.4940 0.4950 0.0040 0.4933 0.0013274 0.4950 0.4970 0.4960 0.0020 0.4960 0.0013418 SS-6 SS-492 0.4950 0.4970 0.4950 0.0020 0.4957 0.0013400 0.4950 0.5020 0.4963 ST90 0.4970 0.4970 0.0020 0.0013436 0.5030 0.5040 0.0020 0.0013800 ST92 SS-558 0.5600 0.5600 0.5600 0.0000 0.5600 0.0017104 ST96 0.5569 0.5541 0.5548 0.0028 0.5553 0.0016816 SS-635 0.6320 0.6350 0.6330 0.0030 0.6333 0.0021877 SS-12 0.7470 0.7480 0.0020 0.7470 0.0030435 0.7460 Where D1, D2, D3 = three different nozzle diameters; each diameter must be (a) measured to within (0.025mm) 0.001 in. Difference = maximum difference between any two diameters; must be (b) less than or equal to (0.1mm) 0.004 in. (c) Average = average of D1, D2 and D3

	BAROMETER CALIBRATION FORM									
		Pbar Env Canada		Device (inc	hes of Hg)	Difference				
					Elevation					
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)				
LA	29-Jun-21	100.7	29.74	29.61	29.68	0.06				
DS	29-Jun-21	100.7	29.74	29.62	29.69	0.05				
CL	29-Jun-21	100.7	29.74	29.63	29.70	0.04				
ML	29-Jun-21	100.7	29.74	29.60	29.67	0.07				
SB	29-Jun-21	100.7	29.74	29.62	29.69	0.05				
SH	29-Jun-21	100.7	29.74	29.60	29.67	0.07				
MG	29-Jun-21	100.7	29.74	29.65	29.72	0.02				
SF	29-Jun-21	100.7	29.74	29.60	29.67	0.07				
JG	29-Jun-21	100.7	29.74	29.65	29.72	0.02				
JC	29-Jun-21	100.7	29.74	29.62	29.69	0.05				
LF		101.8	30.07	30.08	30.15	-0.09				

Calibrated by: Jeremy Gibbs Signature: Date:

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

29-Jun-21

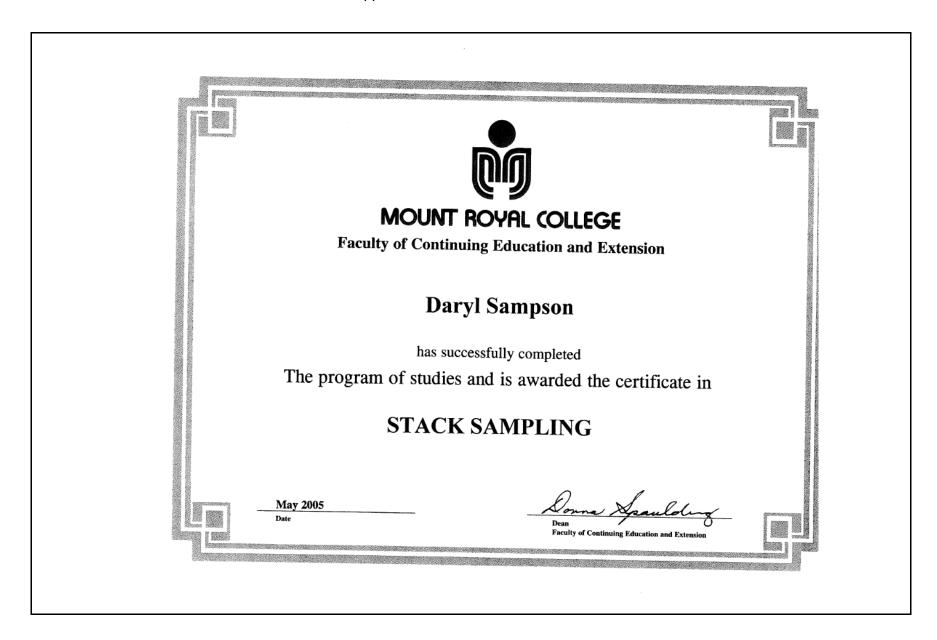
A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Date: 07-Jul

Calibrated by:


ignature:

Justin Ching

TEMPERATURE DEVICE CALIBRATIONS

Omega HH11A	ALA#	Serial # 300132	Reading	2 Variation		00	20	20								
Omega HH11A	ALA#		Reading	Variation			2	JU	30	00	5(00	80	00	17	00
	3	200122		variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	٧
		300132	32.3	0.06%	99.3	-0.13%	200	0.00%	301	0.13%	498	-0.21%	798	-0.16%	1698	_
Omega HH11A	4	200167		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-
Omega HH11A	6	600059	33.1	0.22%	100	0.00%	202	0.30%	302	0.26%	499	-0.10%	798	-0.16%	1697	
TPI 341K	7	2.0315E+10	30.5	-0.31%	98.3	-0.30%	198.1	-0.29%	298	-0.26%	497	-0.31%	796.4	-0.29%	1693	
TPI 341K	8	2.0313E+10	32.1	0.02%	99.3	-0.13%	200.5	0.08%	299.9	-0.01%	499.3	-0.07%	798.7	-0.10%	1696	_
Cont Cmpny	10	102008464	30.2	-0.37%	97.5	-0.45%	197.8	-0.33%	297.7	-0.30%	497.7	-0.24%	795.9	-0.33%	1693.8	-
Omega HH11	14	409426		-6.51%		-17.87%		-30.32%		-39.49%		-52.10%		-63.51%		-
TPI 341K	16	400120029	30.7	-0.26%	99	-0.18%	199.4	-0.09%	299.2	-0.11%	499.6	-0.04%	800.2	0.02%	1703	_
TPI 341K	18	2.0329E+10	31	-0.20%	98.9	-0.20%	198.9	-0.17%	298.7	-0.17%	498.5	-0.16%	798.4	-0.13%	1698	-
ΓΡΙ 341K	20	2.0329E+10	30	-0.41%	98.2	-0.32%	198.1	-0.29%	297.7	-0.30%	497.2	-0.29%	797.1	-0.23%	1696	-
ΓΡΙ 341K	22	2.0329E+10	30.5	-0.31%	98.6	-0.25%	198.5	-0.23%	298.3	-0.22%	497.7	-0.24%	797.4	-0.21%	1696	

Reference device is a NIST certified digital thermocouple calibrator Variation expressed as a percentage of the absolute temperature must be within 1.5 %

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration I Daryl Sampson , as a member of Air and Waste Management Association declare Select one of the following: Absence from conflict of interest Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this project . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas , erring on the side of caution.

1 of 2

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

undertake work in relation to ministry legislation knowledge, experience and objectivity necessary	
Name of Qualified Professional <u>Daryl Sam</u>	pson
Title Senior Env	ironmental Technician/Project Manager
2. Are you a registered member of a profession	al association in B.C.? ☐ Yes ☒ No
Name of Association:	Registration #
3. Brief description of professional services:	
Environmental consulting, specializing in air a	nd atmospheric sciences
publication and its disclosure outside of Canada. cannot be revoked. If you have any questions ab personal information please contact the Ministry Headquarters Office at 1-800-663-7867.	of Environment and Climate Change Strategy
<u>Decla</u>	<u>aration</u>
I am a qualified professional with the knowledge information, advice and/or recommendations in	
Signature:	Witnessed by:
x Daryl Sampson	x Per Co
Print Name: <u>Daryl Sampson</u>	Print Name: Louis Agassiz
Date signed: November 23, 2020	
and is subject to disciplinary action by that asso b) through suitable education, experience, accredit	onal association, is acting under that organization's code of ethics,

July 2019

2021 Annual Report for Authorization 8808 - Atlantic Power - Williams Lake Power Plant
Appendix B - Ash Analysis Report

Your P.O. #: CC

Site Location: Williams Lake Power Plant

Your C.O.C. #: 43160

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2022/02/03 Report #: R3129903 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C183281 Received: 2021/10/29, 08:00

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Metals - TCLP	1	2021/11/04	2021/11/04	BBY7SOP-00001	EPA 1311, 6020bR2 m
Moisture	1	2021/11/02	2021/11/02	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Non Routine/Non Validated Matrix Tested (2)	1	N/A	2021/11/01		
PAH in Soil by GC/MS (SIM)	1	2021/11/01	2021/11/02	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH TEQ Calculation, BC Reg. 132/92 (3)	1	N/A	2021/11/03	BBY WI-00033	Auto Calc
Total PAH and B(a)P Calculation (4)	1	N/A	2021/11/03	BBY WI-00033	Auto Calc
TCLP pH Measurements	1	N/A	2021/11/04	BBY7SOP-00005	EPA 1311
Dioxins/Furans in Soil (1613B) (1, 5)	1	2022/01/14	2022/01/28	BRL SOP-00406 (mod)	EPS 1/RM/23 m
2378TCDF Confirmation (M8290A/M1613) (1)	1	2022/01/13	2022/02/01	BRL SOP-00406	EPA M8290A / M1613

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Campobello, 6740 Campobello Road , Mississauga, ON, L5N 2L8
- (2) Sample(s) analyzed using methodologies that have not been subjected to Bureau Veritas Laboratories' standard validation process for the submitted matrix and is not an accredited method. Analysis performed with client consent, however results should be viewed with discretion.

Page 1 of 20

Your P.O. #: CC

Site Location: Williams Lake Power Plant

Your C.O.C. #: 43160

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2022/02/03 Report #: R3129903 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C183281

Received: 2021/10/29, 08:00

(3) PAH TEQ = 0.1*benzo(a)anthracene + 1.0*benzo(a)pyrene + 0.1*benzo(b)fluoranthene + 0.1*benzo(k)fluoranthene + 1.1*dibenzo(a,h)anthracene + 0.2*indeno(1,2,3-cd)pyrene (4) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Actidine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include (B.C. Reg. 116/2018, Schedule 3.4): Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthhene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(5) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

Encryption Key

Bureau Veritas

03 Feb 2022 15:31:54

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team

Email: customersolutionswest@bureauveritas.com

Phone# (604) 734 7276

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 20

RESULTS OF CHEMICAL ANALYSES OF SOIL

MISCELLANEOUS Sample Matrix	N/A	ASH	ONSITE
	UNITS	Glass Jars (clear) filled with Ash	QC Batch
COC Number		43160	
Sampling Date		2021/10/27 14:30	
Bureau Veritas ID		AJJ409	

Page 3 of 20

PHYSICAL TESTING (SOIL)

Bureau Veritas ID		AJJ409		
Sampling Date		2021/10/27		
Sampling Date		14:30		
COC Number		43160		
	UNITS	Glass Jars (clear)	PDI	QC Batch
	UNITS	filled with Ash	KUL	QC Battii
Physical Properties	UNITS	filled with Ash	KUL	QC Batti
Physical Properties Moisture	%	filled with Ash 0.70		A410555

Page 4 of 20

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AJJ409		
Sampling Date		2021/10/27		
Sampling Date		14:30		
COC Number		43160		
		Glass Jars (clear)		
	UNITS	filled with Ash	RDL	QC Batch
Calculated Parameters	UNITS	· ,	RDL	QC Batch
Calculated Parameters PAH Toxicity Equivalency	mg/kg	filled with Ash	0.020	

Page 5 of 20

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID		AJJ409	
Sampling Date		2021/10/27 14:30	
COC Number		43160	
	UNITS	Glass Jars (clear) filled with Ash	QC Batch
TOIRE ! ! R !			
TCLP Extraction Procedure			
Initial pH of Sample	рН	12.6	A412807
	pH pH	12.6 1.69	A412807 A412807
Initial pH of Sample	-		

Page 6 of 20

SUBCONTRACTED ANALYSIS (SOIL)

Bureau Veritas ID		AJJ409						
Sampling Date		2021/10/27 14:30						
COC Number		43160			TOXIC EQU	JIVALENCY	# of	
	UNITS	Glass Jars (clear) filled with Ash	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
TCDF Confirmation		•	•				·	·
Confirmation 2,3,7,8-Tetra CDF **	pg/g	27.3	0.62	5.0	0.100	2.73		A489523
TOTAL TOXIC EQUIVALENCY	pg/g					2.73		
Surrogate Recovery (%)	•							
Confirmation C13-2378 TetraCDF **	%	93						A489523

EDL = Estimated Detection Limit

Page 7 of 20

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{**} CDF = Chloro Dibenzo-p-Furan

DIOXIN AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		AJJ409						
Sampling Date		2021/10/27 14:30						
COC Number		43160			TOXIC EQU	JIVALENCY	# of	
	UNITS	Glass Jars (clear) filled with Ash	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
DIOXINS		•			•			
1,2,3,4,6,7,8-Hepta CDD *	pg/g	<1.40 (1)	1.40	24.9	0.0100	0.0140	0	A489522
1,2,3,4,7,8-Hexa CDD *	pg/g	<0.689 (1)	0.689	24.9	0.100	0.0689	0	A489522
1,2,3,6,7,8-Hexa CDD *	pg/g	0.991	0.477	24.9	0.100	0.0991	1	A489522
1,2,3,7,8,9-Hexa CDD *	pg/g	<1.56 (2)	1.56	24.9	0.100	0.156	0	A489522
1,2,3,7,8-Penta CDD *	pg/g	3.91	0.538	24.9	1.00	3.91	1	A489522
2,3,7,8-Tetra CDD *	pg/g	3.85	0.652	4.98	1.00	3.85	1	A489522
Octa CDD *	pg/g	1.33	0.812	49.8	0.000300	0.000399	1	A489522
Total Hepta CDD *	pg/g	<1.40	1.40	24.9			0	A489522
Total Hexa CDD *	pg/g	9.46	0.484	24.9			4	A489522
Total Penta CDD *	pg/g	26.0	0.538	24.9			7	A489522
Total Tetra CDD *	pg/g	52.3	0.652	4.98			12	A489522
FURANS	•		•	•				
1,2,3,4,6,7,8-Hepta CDF **	pg/g	1.47	0.562	24.9	0.0100	0.0147	1	A489522
1,2,3,4,7,8,9-Hepta CDF **	pg/g	1.34	0.673	24.9	0.0100	0.0134	1	A489522
1,2,3,4,7,8-Hexa CDF **	pg/g	4.32	0.577	24.9	0.100	0.432	1	A489522
1,2,3,6,7,8-Hexa CDF **	pg/g	3.97	0.547	24.9	0.100	0.397	1	A489522
1,2,3,7,8,9-Hexa CDF **	pg/g	8.19	0.694	24.9	0.100	0.819	1	A489522
1,2,3,7,8-Penta CDF **	pg/g	16.9	0.561	24.9	0.0300	0.507	1	A489522
2,3,4,6,7,8-Hexa CDF **	pg/g	<1.44 (1)	1.44	24.9	0.100	0.144	0	A489522
2,3,4,7,8-Penta CDF **	pg/g	12.6	0.506	24.9	0.300	3.78	1	A489522

EDL = Estimated Detection Limit

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(2) RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

Page 8 of 20

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

^{*} CDD = Chloro Dibenzo-p-Dioxin

^{**} CDF = Chloro Dibenzo-p-Furan

⁽¹⁾ EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

DIOXIN AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		AJJ409						
Sampling Date		2021/10/27 14:30						
COC Number		43160			TOXIC EQU	IIVAI ENCV	# of	
COC Number		Glass Jars (clear)			TOXICEQU	IVALLIVET	# 01	
	UNITS	filled with Ash	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDF **	pg/g	61.2	0.505	4.98	0.100	6.12	1	A489522
Octa CDF **	pg/g	<0.816 (1)	0.816	49.8	0.000300	0.000245	0	A489522
Total Hepta CDF **	pg/g	2.81	0.613	24.9			2	A489522
Total Hexa CDF **	pg/g	27.3	0.576	24.9			6	A489522
Total Penta CDF **	pg/g	137	0.532	24.9			14	A489522
Total Tetra CDF **	pg/g	389	0.505	4.98			17	A489522
TOTAL TOXIC EQUIVALENCY	pg/g					20.3		
Surrogate Recovery (%)			-	-			'	
37CL4 2378 Tetra CDD *	%	108						A489522
C13-1234678 HeptaCDD *	%	113						A489522
C13-1234678 HeptaCDF **	%	107						A489522
C13-123478 HexaCDD *	%	122						A489522
C13-123478 HexaCDF **	%	120						A489522
C13-1234789 HeptaCDF **	%	116						A489522
C13-123678 HexaCDD *	%	120						A489522
C13-123678 HexaCDF **	%	117						A489522
C13-12378 PentaCDD *	%	91						A489522
C13-12378 PentaCDF **	%	86						A489522
C13-123789 HexaCDF **	%	119						A489522
C13-234678 HexaCDF **	%	131						A489522
C13-23478 PentaCDF **	%	90						A489522
C13-2378 TetraCDD *	%	93						A489522
C13-2378 TetraCDF **	%	95						A489522
C13-OCDD *	%	88						A489522

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Page 9 of 20

TCLP METALS (SOIL)

Bureau Veritas ID		AJJ409		
Sampling Date		2021/10/27		
cocking to		14:30		
COC Number		43160		
	UNITS	Glass Jars (clear) filled with Ash	RDL	QC Batch
TCLP Extraction Procedure				
Leachate Antimony (Sb)	mg/L	<0.10	0.10	A414333
Leachate Arsenic (As)	mg/L	<0.10	0.10	A414333
Leachate Barium (Ba)	mg/L	2.50	0.10	A414333
Leachate Beryllium (Be)	mg/L	<0.10	0.10	A414333
Leachate Boron (B)	mg/L	<0.10	0.10	A414333
Leachate Cadmium (Cd)	mg/L	<0.10	0.10	A414333
Leachate Chromium (Cr)	mg/L	<0.10	0.10	A414333
Leachate Cobalt (Co)	mg/L	<0.10	0.10	A414333
Leachate Copper (Cu)	mg/L	<0.10	0.10	A414333
Leachate Iron (Fe)	mg/L	<0.50	0.50	A414333
Leachate Lead (Pb)	mg/L	<0.10	0.10	A414333
Leachate Mercury (Hg)	mg/L	<0.0020	0.0020	A414333
Leachate Molybdenum (Mo)	mg/L	<0.10	0.10	A414333
Leachate Nickel (Ni)	mg/L	<0.10	0.10	A414333
Leachate Selenium (Se)	mg/L	<0.10	0.10	A414333
Leachate Silver (Ag)	mg/L	<0.010	0.010	A414333
Leachate Thallium (TI)	mg/L	<0.10	0.10	A414333
Leachate Uranium (U)	mg/L	<0.10	0.10	A414333
Leachate Vanadium (V)	mg/L	<0.10	0.10	A414333
Leachate Zinc (Zn)	mg/L	<0.10	0.10	A414333
Leachate Zirconium (Zr)	mg/L	<0.10	0.10	A414333
RDL = Reportable Detection Li	mit			

Page 10 of 20

CSR PAH IN SOIL BY GC-MS (SOIL)

Bureau Veritas ID		AJJ409		
Samulina Data		2021/10/27		
Sampling Date		14:30		
COC Number		43160		
	UNITS	Glass Jars (clear) filled with Ash	RDL	QC Batcl
Calculated Parameters				
Low Molecular Weight PAH`s	mg/kg	<0.050	0.050	A406709
High Molecular Weight PAH`s	mg/kg	<0.050	0.050	A406709
Total PAH	mg/kg	<0.050	0.050	A406709
B[a]P TPE Total Potency Equivalents	mg/kg	0.024	0.010	A406709
Polycyclic Aromatics			'	
Naphthalene	mg/kg	<0.010	0.010	A411449
2-Methylnaphthalene	mg/kg	<0.020	0.020	A411449
Acenaphthylene	mg/kg	<0.0050	0.0050	A411449
Acenaphthene	mg/kg	<0.0050	0.0050	A411449
Fluorene	mg/kg	<0.020	0.020	A41144
Phenanthrene	mg/kg	<0.010	0.010	A41144
Anthracene	mg/kg	<0.0040	0.0040	A41144
Fluoranthene	mg/kg	<0.020	0.020	A41144
Pyrene	mg/kg	<0.020	0.020	A41144
Benzo(a)anthracene	mg/kg	<0.020	0.020	A41144
Chrysene	mg/kg	<0.020	0.020	A41144
Benzo(b&j)fluoranthene	mg/kg	<0.020	0.020	A411449
Benzo(b)fluoranthene	mg/kg	<0.020	0.020	A411449
Benzo(k)fluoranthene	mg/kg	<0.020	0.020	A411449
Benzo(a)pyrene	mg/kg	<0.020	0.020	A411449
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	0.020	A411449
Dibenz(a,h)anthracene	mg/kg	<0.020	0.020	A41144
Benzo(g,h,i)perylene	mg/kg	<0.050	0.050	A41144
Surrogate Recovery (%)			•	
D10-ANTHRACENE (sur.)	%	0 (1)		A41144
D8-ACENAPHTHYLENE (sur.)	%	0 (1)		A41144
D8-NAPHTHALENE (sur.)	%	0 (1)		A41144
TERPHENYL-D14 (sur.)	%	0 (1)		A41144

Page 11 of 20

GENERAL COMMENTS

Sample AJJ409 [Glass Jars (clear) filled with Ash]: Non-routine matrix analyzed with client consent for PAH on batch: A411449. Please refer to BBY PDF -00149.

Results relate only to the items tested.

Page 12 of 20

Your P.O. #: CC

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A410555	JUS	Method Blank	Moisture	2021/11/02	<0.30		%	
A410555	JUS	RPD [AJJ409-01]	Moisture	2021/11/02	15		%	20
A411449	RW4	Matrix Spike	D10-ANTHRACENE (sur.)	2021/11/02		87	%	50 - 140
			D8-ACENAPHTHYLENE (sur.)	2021/11/02		86	%	50 - 140
			D8-NAPHTHALENE (sur.)	2021/11/02		94	%	50 - 140
			TERPHENYL-D14 (sur.)	2021/11/02		86	%	50 - 140
			Naphthalene	2021/11/02		90	%	50 - 140
			2-Methylnaphthalene	2021/11/02		88	%	50 - 140
			Acenaphthylene	2021/11/02		81	%	50 - 140
			Acenaphthene	2021/11/02		82	%	50 - 140
			Fluorene	2021/11/02		86	%	50 - 140
			Phenanthrene	2021/11/02		79	%	50 - 140
			Anthracene	2021/11/02		78	%	50 - 140
			Fluoranthene	2021/11/02		80	%	50 - 140
			Pyrene	2021/11/02		81	%	50 - 140
			Benzo(a)anthracene	2021/11/02		78	%	50 - 140
			Chrysene	2021/11/02		76	%	50 - 140
			Benzo(b&j)fluoranthene	2021/11/02		77	%	50 - 140
			Benzo(b)fluoranthene	2021/11/02		76	%	50 - 140
			Benzo(k)fluoranthene	2021/11/02		77	%	50 - 140
			Benzo(a)pyrene	2021/11/02		78	%	50 - 140
			Indeno(1,2,3-cd)pyrene	2021/11/02		85	%	50 - 140
			Dibenz(a,h)anthracene	2021/11/02		84	%	50 - 140
			Benzo(g,h,i)perylene	2021/11/02		81	%	50 - 140
A411449	RW4	Spiked Blank	D10-ANTHRACENE (sur.)	2021/11/02		86	%	50 - 140
H411443	KVV4	эрікей Біатік	D8-ACENAPHTHYLENE (sur.)			87	%	50 - 140
				2021/11/02				
			D8-NAPHTHALENE (sur.)	2021/11/02		94	%	50 - 140
			TERPHENYL-D14 (sur.)	2021/11/02		89	%	50 - 140
			Naphthalene	2021/11/02		88	%	50 - 140
			2-Methylnaphthalene	2021/11/02		85	%	50 - 140
			Acenaphthylene	2021/11/02		78	%	50 - 140
			Acenaphthene	2021/11/02		80	%	50 - 140
			Fluorene	2021/11/02		84	%	50 - 140
			Phenanthrene	2021/11/02		76	%	50 - 140
			Anthracene	2021/11/02		74	%	50 - 140
			Fluoranthene	2021/11/02		80	%	50 - 140
			Pyrene	2021/11/02		80	%	50 - 140
			Benzo(a)anthracene	2021/11/02		73	%	50 - 140
			Chrysene	2021/11/02		72	%	50 - 140
			Benzo(b&j)fluoranthene	2021/11/02		72	%	50 - 140
			Benzo(b)fluoranthene	2021/11/02		72	%	50 - 140
			Benzo(k)fluoranthene	2021/11/02		73	%	50 - 140
			Benzo(a)pyrene	2021/11/02		73	%	50 - 140
			Indeno(1,2,3-cd)pyrene	2021/11/02		80	%	50 - 140
			Dibenz(a,h)anthracene	2021/11/02		78	%	50 - 140
			Benzo(g,h,i)perylene	2021/11/02		76	%	50 - 140
A411449	RW4	Method Blank	D10-ANTHRACENE (sur.)	2021/11/02		89	%	50 - 140
			D8-ACENAPHTHYLENE (sur.)	2021/11/02		86	%	50 - 140
			D8-NAPHTHALENE (sur.)	2021/11/02		97	%	50 - 140
			TERPHENYL-D14 (sur.)	2021/11/02		88	%	50 - 140
			Naphthalene	2021/11/02	< 0.010		mg/kg	
			2-Methylnaphthalene	2021/11/02	<0.020		mg/kg	
			Acenaphthylene	2021/11/02	<0.0050		mg/kg	
			Acenaphthene	2021/11/02	<0.0050			

Page 13 of 20

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Fluorene	2021/11/02	<0.020		mg/kg	
			Phenanthrene	2021/11/02	< 0.010		mg/kg	
			Anthracene	2021/11/02	< 0.0040		mg/kg	
			Fluoranthene	2021/11/02	< 0.020		mg/kg	
			Pyrene	2021/11/02	< 0.020		mg/kg	
			Benzo(a)anthracene	2021/11/02	<0.020		mg/kg	
			Chrysene	2021/11/02	<0.020		mg/kg	
			Benzo(b&j)fluoranthene	2021/11/02	<0.020		mg/kg	
			Benzo(b)fluoranthene	2021/11/02	<0.020		mg/kg	
			Benzo(k)fluoranthene	2021/11/02	<0.020		mg/kg	
			Benzo(a)pyrene	2021/11/02	<0.020		mg/kg	
			Indeno(1,2,3-cd)pyrene	2021/11/02	<0.020		mg/kg	
			Dibenz(a,h)anthracene	2021/11/02	<0.020		mg/kg	
			Benzo(g,h,i)perylene	2021/11/02	<0.020		mg/kg	
411449	RW4	RPD	Naphthalene	2021/11/02	NC		111g/kg %	50
411449	KVV4	KPD	•		NC NC		%	50
			2-Methylnaphthalene	2021/11/02				
			Acenaphthylene	2021/11/02	NC		%	50
			Acenaphthene	2021/11/02	NC		%	50
			Fluorene	2021/11/02	NC		%	50
			Phenanthrene	2021/11/02	NC		%	50
			Anthracene	2021/11/02	NC		%	50
			Fluoranthene	2021/11/02	NC		%	50
			Pyrene	2021/11/02	NC		%	50
			Benzo(a) anthracene	2021/11/02	NC		%	50
			Chrysene	2021/11/02	NC		%	50
			Benzo(b&j)fluoranthene	2021/11/02	NC		%	50
			Benzo(b)fluoranthene	2021/11/02	NC		%	50
			Benzo(k)fluoranthene	2021/11/02	NC		%	50
			Benzo(a)pyrene	2021/11/02	NC		%	50
			Indeno(1,2,3-cd)pyrene	2021/11/02	NC		%	50
			Dibenz(a,h)anthracene	2021/11/02	NC		%	50
			Benzo(g,h,i)perylene	2021/11/02	NC		%	50
412807	ERE	Method Blank	Initial pH of Sample	2021/11/04	4.90		pH	
			Final pH of Leachate	2021/11/04	4.88		pH	
			pH of Leaching Fluid	2021/11/04	4.90		pН	
412807	ERE	RPD	Initial pH of Sample	2021/11/04	0.21		%	N/A
			pH after HCl	2021/11/04	0		%	N/A
			Final pH of Leachate	2021/11/04	0.21		%	N/A
			pH of Leaching Fluid	2021/11/04	0		%	N/A
414333	JBN	Spiked Blank	Leachate Antimony (Sb)	2021/11/04	•	109	%	75 - 12
414333	JUIN	Spiked blank	Leachate Ariemony (35)	2021/11/04		106	%	75 - 12
			Leachate Barium (Ba)	2021/11/04		106	%	75 - 12
			Leachate Beryllium (Be)	2021/11/04		103	%	75 - 12
			Leachate Boron (B)	2021/11/04		103	%	75 - 12
			Leachate Cadmium (Cd)	2021/11/04		100	%	75 - 12
			Leachate Chromium (Cr)	2021/11/04		101	%	75 - 12
			Leachate Cobalt (Co)	2021/11/04		104	%	75 - 12
			Leachate Copper (Cu)	2021/11/04		100	%	75 - 1
			Leachate Iron (Fe)	2021/11/04		100	%	75 - 1
			Leachate Lead (Pb)	2021/11/04		103	%	75 - 1
			Leachate Mercury (Hg)	2021/11/04		99	%	75 - 1
			Leachate Molybdenum (Mo)	2021/11/04		105	%	75 - 1
			Leachate Nickel (Ni)	2021/11/04		99	%	75 - 12
			Leachate Selenium (Se)	2021/11/04		103	%	75 - 12

Page 14 of 20

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Leachate Silver (Ag)	2021/11/04		98	%	75 - 12
			Leachate Thallium (TI)	2021/11/04		101	%	75 - 12
			Leachate Uranium (U)	2021/11/04		101	%	75 - 12
			Leachate Vanadium (V)	2021/11/04		103	%	75 - 12
			Leachate Zinc (Zn)	2021/11/04		99	%	75 - 12
			Leachate Zirconium (Zr)	2021/11/04		114	%	75 - 12
4414333	JBN	Method Blank	Leachate Antimony (Sb)	2021/11/04	<0.10		mg/L	
			Leachate Arsenic (As)	2021/11/04	<0.10		mg/L	
			Leachate Barium (Ba)	2021/11/04	<0.10		mg/L	
			Leachate Beryllium (Be)	2021/11/04	<0.10		mg/L	
			Leachate Boron (B)	2021/11/04	<0.10		mg/L	
			Leachate Cadmium (Cd)	2021/11/04	<0.10		mg/L	
			Leachate Chromium (Cr)	2021/11/04	<0.10		mg/L	
			Leachate Cobalt (Co)	2021/11/04	<0.10		mg/L	
			Leachate Copper (Cu)	2021/11/04	<0.10		mg/L	
			Leachate Iron (Fe)	2021/11/04	<0.50		mg/L	
			Leachate Lead (Pb)	2021/11/04	<0.10		mg/L	
			Leachate Mercury (Hg)	2021/11/04	<0.0020		mg/L	
			Leachate Molybdenum (Mo)	2021/11/04	<0.10		mg/L	
			Leachate Nickel (Ni)	2021/11/04	<0.10		mg/L	
			Leachate Selenium (Se)	2021/11/04	<0.10		mg/L	
			Leachate Silver (Ag)	2021/11/04	<0.010		mg/L	
			Leachate Thallium (TI)	2021/11/04	<0.10		mg/L	
			Leachate Uranium (U)	2021/11/04	<0.10		mg/L	
			Leachate Vanadium (V)	2021/11/04	<0.10		mg/L	
			Leachate Zinc (Zn)	2021/11/04	<0.10		mg/L	
			Leachate Zirconium (Zr)	2021/11/04	<0.10		mg/L	
489522	éGP	Matrix Spike [AJJ409-02]	37CL4 2378 Tetra CDD	2022/01/28		99	%	35 - 19
			C13-123478 HexaCDD	2022/01/28		113	%	32 - 14
			C13-123478 HexaCDF	2022/01/28		104	%	26 - 15
			C13-1234789 HeptaCDF	2022/01/28		86	%	26 - 13
			C13-123789 HexaCDF	2022/01/28		103	%	29 - 14
			C13-234678 HexaCDF	2022/01/28		118	%	28 - 13
			C13-23478 PentaCDF	2022/01/28		85	%	21 - 17
			C13-1234678 HeptaCDD	2022/01/28		93	%	23 - 14
			C13-1234678 HeptaCDF	2022/01/28		82	%	28 - 14
			C13-123678 HexaCDD	2022/01/28		106	%	28 - 13
			C13-123678 HexaCDF	2022/01/28		101	%	26 - 12
			C13-12378 PentaCDD	2022/01/28		91	%	25 - 18
			C13-12378 PentaCDF	2022/01/28		81	%	24 - 18
			C13-2378 TetraCDD	2022/01/28		86	%	25 - 16
			C13-2378 TetraCDF	2022/01/28		84	%	24 - 16
			C13-OCDD	2022/01/28		84	%	17 - 19
			1,2,3,4,6,7,8-Hepta CDD	2022/01/28		95	%	70 - 14
			1,2,3,4,7,8-Hexa CDD	2022/01/28		103	%	70 - 16
			1,2,3,6,7,8-Hexa CDD	2022/01/28		105	%	76 - 13
			1,2,3,7,8,9-Hexa CDD	2022/01/28		87	%	64 - 16
			1,2,3,7,8-Penta CDD	2022/01/28		101	%	25 - 18
			2,3,7,8-Tetra CDD	2022/01/28		89	%	67 - 15
			Octa CDD	2022/01/28		106	%	78 - 14
			1,2,3,4,6,7,8-Hepta CDF	2022/01/28		90	%	82 - 12
			1,2,3,4,7,8,9-Hepta CDF	2022/01/28		88	%	78 - 13
			1,2,3,4,7,8-Hexa CDF	2022/01/28		97	%	72 - 13
			1,2,3,6,7,8-Hexa CDF	2022/01/28		98	%	84 - 13

Page 15 of 20

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Dateil	mile	ale type	1,2,3,7,8,9-Hexa CDF	2022/01/28	Value	94	%	78 - 130
			1,2,3,7,8-Penta CDF	2022/01/28		105	%	80 - 134
			2,3,4,6,7,8-Hexa CDF	2022/01/28		88	%	70 - 156
			2,3,4,7,8-Penta CDF	2022/01/28		106	%	68 - 160
			2,3,7,8-Tetra CDF	2022/01/28		87	%	75 - 158
			Octa CDF	2022/01/28		96	%	63 - 170
A489522	éGP	Spiked Blank	37CL4 2378 Tetra CDD	2022/01/28		103	%	35 - 197
A403322	coi	Spiked Blank	C13-123478 HexaCDD	2022/01/28		106	%	32 - 141
			C13-123478 HexaCDF	2022/01/28		104	%	26 - 152
			C13-1234789 HeptaCDF	2022/01/28		85	%	26 - 138
			C13-123789 HexaCDF	2022/01/28		103	%	29 - 147
			C13-234678 HexaCDF	2022/01/28		117	%	28 - 136
			C13-23478 PentaCDF	2022/01/28		84	%	21 - 178
			C13-1234678 HeptaCDD	2022/01/28		90	%	23 - 140
			C13-1234678 HeptaCDF	2022/01/28		82	%	28 - 143
			C13-123678 HexaCDD	2022/01/28		113	%	28 - 130
			C13-123678 HexaCDF	2022/01/28		99	%	26 - 123
			C13-12378 PentaCDD	2022/01/28		88	%	25 - 181
			C13-12378 PentaCDF	2022/01/28		82	%	24 - 185
			C13-2378 TetraCDD	2022/01/28		86	%	25 - 164
			C13-2378 TetraCDF	2022/01/28		84	%	24 - 169
			C13-OCDD	2022/01/28		81	%	17 - 157
			1,2,3,4,6,7,8-Hepta CDD	2022/01/28		96	%	70 - 140
			1,2,3,4,7,8-Hexa CDD	2022/01/28		103	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2022/01/28		106	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2022/01/28		85	%	64 - 162
			1,2,3,7,8-Penta CDD	2022/01/28		103	%	25 - 181
			2,3,7,8-Tetra CDD	2022/01/28		88	%	67 - 158
			Octa CDD	2022/01/28		103	%	78 - 144
			1,2,3,4,6,7,8-Hepta CDF	2022/01/28		91	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2022/01/28		87	%	78 - 138
			1,2,3,4,7,8-Hexa CDF	2022/01/28		97	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2022/01/28		99	%	84 - 130
			1,2,3,7,8,9-Hexa CDF	2022/01/28		96	%	78 - 130
			1,2,3,7,8-Penta CDF	2022/01/28		106	%	80 - 134
			2,3,4,6,7,8-Hexa CDF	2022/01/28		87	%	70 - 156
			2,3,4,7,8-Penta CDF	2022/01/28		105	%	68 - 160
			2,3,7,8-Tetra CDF	2022/01/28		93	%	75 - 158
			Octa CDF	2022/01/28		95	%	63 - 170
A489522	éGP	RPD	1,2,3,4,6,7,8-Hepta CDD	2022/01/28	1.0	-	%	25
		2	1,2,3,4,7,8-Hexa CDD	2022/01/28	6.0		%	25
			1,2,3,6,7,8-Hexa CDD	2022/01/28	3.7		%	25
			1,2,3,7,8,9-Hexa CDD	2022/01/28	3.5		%	25
			1,2,3,7,8-Penta CDD	2022/01/28	0.98		%	25
			2,3,7,8-Tetra CDD	2022/01/28	0		%	25
			Octa CDD	2022/01/28	1.9		%	25
			1,2,3,4,6,7,8-Hepta CDF	2022/01/28	2.2		%	25
			1,2,3,4,7,8,9-Hepta CDF	2022/01/28	1.2		%	25
			1,2,3,4,7,8-Hexa CDF	2022/01/28	2.0		%	25
			1,2,3,6,7,8-Hexa CDF	2022/01/28	1.0		%	25
			1,2,3,7,8,9-Hexa CDF	2022/01/28	1.0		%	25
			1,2,3,7,8,9-riexa CDF	2022/01/28	0.95		%	25
			2,3,4,6,7,8-Hexa CDF	2022/01/28	1.2		%	25
			2,0,4,0,7,0-HEXB CDI	2022/01/20	1.4		/0	23

Page 16 of 20

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limi
			2,3,7,8-Tetra CDF	2022/01/28	5.2	-	%	25
			Octa CDF	2022/01/28	1.1		%	25
489522	éGP	Method Blank	37CL4 2378 Tetra CDD	2022/01/28		98	%	35 - 19
			C13-123478 HexaCDD	2022/01/28		103	%	32 - 14
			C13-123478 HexaCDF	2022/01/28		102	%	26 - 15
			C13-1234789 HeptaCDF	2022/01/28		86	%	26 - 1
			C13-123789 HexaCDF	2022/01/28		98	%	29 - 14
			C13-234678 HexaCDF	2022/01/28		114	%	28 - 1
			C13-23478 PentaCDF	2022/01/28		80	%	21 - 1
			C13-1234678 HeptaCDD	2022/01/28		90	%	23 - 1
			C13-1234678 HeptaCDF	2022/01/28		81	%	28 - 1
			C13-123678 HexaCDD	2022/01/28		107	%	28 - 1
			C13-123678 HexaCDF	2022/01/28		97	%	26 - 1
			C13-12378 PentaCDD	2022/01/28		84	%	25 - 1
			C13-12378 PentaCDF	2022/01/28		78	%	24 - 1
			C13-2378 TetraCDD	2022/01/28		80	%	25 - 1
			C13-2378 TetraCDF	2022/01/28		78	%	24 - 1
			C13-OCDD	2022/01/28		83	%	17 - 1
			1,2,3,4,6,7,8-Hepta CDD	2022/01/28	<0.620, EDL=0.620		pg/g	
			1,2,3,4,7,8-Hexa CDD	2022/01/28	<0.679, EDL=0.679		pg/g	
			1,2,3,6,7,8-Hexa CDD	2022/01/28	<0.611, EDL=0.611		pg/g	
			1,2,3,7,8,9-Hexa CDD	2022/01/28	<0.628, EDL=0.628		pg/g	
			1,2,3,7,8-Penta CDD	2022/01/28	<0.458, EDL=0.458		pg/g	
			2,3,7,8-Tetra CDD	2022/01/28	<0.580, EDL=0.580		pg/g	
			Octa CDD	2022/01/28	1.70, EDL=0.818		pg/g	
			Total Hepta CDD	2022/01/28	<0.620, EDL=0.620		pg/g	
			Total Hexa CDD	2022/01/28	<0.638, EDL=0.638		pg/g	
			Total Penta CDD	2022/01/28	<0.458, EDL=0.458		pg/g	
			Total Tetra CDD	2022/01/28	<0.580, EDL=0.580		pg/g	
			1,2,3,4,6,7,8-Hepta CDF	2022/01/28	<0.606, EDL=0.606		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2022/01/28	<0.747, EDL=0.747		pg/g	
			1,2,3,4,7,8-Hexa CDF	2022/01/28	<0.497, EDL=0.497		pg/g	
			1,2,3,6,7,8-Hexa CDF	2022/01/28	<0.489, EDL=0.489		pg/g	
			1,2,3,7,8,9-Hexa CDF	2022/01/28	<0.618, EDL=0.618		pg/g	
			1,2,3,7,8-Penta CDF	2022/01/28	<0.786, EDL=0.786		pg/g	
			2,3,4,6,7,8-Hexa CDF	2022/01/28	<0.434, EDL=0.434		pg/g	

Page 17 of 20

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			2,3,4,7,8-Penta CDF	2022/01/28	<0.580,		pg/g	
					EDL=0.580			
			2,3,7,8-Tetra CDF	2022/01/28	<0.591,		pg/g	
					EDL=0.591			
			Octa CDF	2022/01/28	<0.878,		pg/g	
					EDL=0.878			
			Total Hepta CDF	2022/01/28	<0.670,		pg/g	
					EDL=0.670			
			Total Hexa CDF	2022/01/28	<0.502,		pg/g	
					EDL=0.502			
			Total Penta CDF	2022/01/28	<0.755,		pg/g	
					EDL=0.755			
			Total Tetra CDF	2022/01/28	<0.591,		pg/g	
					EDL=0.591			
A489523	éCP	Method Blank	Confirmation C13-2378 TetraCDF	2022/01/31		105	%	40 - 135
			Confirmation 2,3,7,8-Tetra CDF	2022/01/31	< 0.18		pg/g	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Page 18 of 20

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

nc	Di	Grazia	
Melissa	DiGrazi	a, Supervisor – Environmental Customer Se	rvice

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS

Sandy Yuan, M.Sc., QP, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 19 of 20

			C183281_C	OC	III I		
(0)		Cı	ustody Trad	cking Form		W4310	50
Please use this form for cus	tody tracking when subr	mitting the work in	structions via eCOC	(electronic Chain of Custody). the top right hand side. This	First Sampl	e: Glas Ash	is Jars (clear) filled with
				the cooler with your samples.	Last Sample Sample Cou	e: Glas Ash	s Jars (clear) filled with
	Relinquished By		2021/10/Z¥	Declarate Visc	Received By		hollaba
Jurob Stay		Date Time (24 HR) Date	14:56	ALFRED NGAL	Motor	Date Time (24 HR) Date	08200
Post	tign	Time (24 HR) Date	Whitestan Sweat	Rel	/	Time (24 HR) Date	2014/01 1771/6/46/56
Unless otherwise agreed to, sub-	missions and use of servi	Time (24 HR) ces are governed b			nich can be found at w	Time (24 HR) vw.bvna.com.	450480
			Triage Inf	ormation	为为基金企业 的		
Sampled By (Print) Sucol Stey	i	# of Coolers	/Pkgs:	Rush 🗀	Immediate Test	F	ood Residue 🔲
31106				Micro 🗀		Foo	od Chemistry
		-0124	*** LABORATOR	Y USE ONLY ***		(Fidelity)	
Received At	Lab Comm	nents:		Custody Present (Y/N)		g Media Te	mperature *C 2 3
Labeled By				N	NA	V 20	20 20
Verified By							
				Drinking Water	Metals Preservation Ci	neck Done (Circle)	YES NO
						co	R FCD-00383/3 Page 1 of 1
				ы,			
			×				
14							

Project Information: C183281

 Job Received:
 2021/10/29 08:00

 Results Required By:
 2021/11/05 08:00

 Expected Arrival:
 2021/10/29 08:00

 Submitted By:
 Jacob Steyl

Submitted To: Burnaby ENV: 4606

Canada Way

Invoice Information

Attn: Jacob Steyl ATLANTIC POWER (WILLIAMS LAKE) LTD. 4465 MACKENZIE AVENUE NORTH WILLIAMS LAKE , BC , V2G 5E8

Email to:

jsteyl@atlanticpower.com

2021/11/05 08:00

Report Information

Attn: Jacob Steyl ATLANTIC POWER (WILLIAMS LAKE) LTD. 4465 MACKENZIE AVENUE NORTH WILLIAMS LAKE , BC , V2G 5E8

Email to:

jsteyl@atlanticpower.com

Project Information

Quote #: C10006, B71255

PO/AFE#: CO Project #:

Site Location: Williams Lake Power Plant

Analytical Summary

CSR PAH in Soil by GC-MS
TCLP Metals
Dioxins/Furans in Soil (EPS
1/RM/23)
Moisture
PAH TEQ Calculation, BC Reg.
132/92
TCLP pH Measurements

					AH	Met	7/F (23)	ure	EQ.	Ĭ.
Client Sample ID	CInt Ref	Sampling Date/Time	Matrix	#Cont	CSR P	TOLP	Dioxin 1/RM,	Moist	PAH 1	Tap
Glass Jars (clear) filled with Ash	1	2021/10/27 14:30	SOIL	4	Α	Α	Α	Α	Α	Α

Deadlines are estimates only and are subject to change. Please refer to your Job Confirmation report for final due dates.

Submission Information

of Samples:

Details: Add NONMATRIX code = ASH

Page 1 of 1