2023 Annual Report for Authorization 8808

Atlantic Power - Williams Lake Power Plant

Jacob Steyl

Executive Summary

This Report details the Environmental Emissions from January 1, 2023 to December 31, 2023 and fulfils the requirement of section 3.6 of Authorization 8808 [1].

No rail ties or greater than 1% construction and demolition (C&D) waste were used as feedstock during the reporting period. A total of 332,349 wet tonnes of clean biomass was incinerated during 3,982 hours of normal operation.

During this time two discrete monitoring sessions (one for Air Discharge from the Stack and one for Ash Analysis) were performed. The test results were compared against the levels in Permit 8808 and the Hazardous Waste Regulation, and no exceedances of any of the parameters in Schedules A and D of the Permit measured.

Continuous Emissions Monitoring System (CEMS) measurements were also taken as required by the Permit throughout this Period, with no exceedances recorded.

Respectfully,

Jacob Steyl, P.Eng

January 8, 2024

Table of Contents

Tab	le of Tables and Figures	. ii
Non	nenclature and Abbreviations	iii
1	Introduction	1
2	Monthly Operating Hours	2
3	Fuel	2
4	Continuous Emissions Monitoring	3
4.1	Sulphur Oxides	3
4.2	Nitrogen Oxides	3
4.3	Hydrochloric Acid	3
4.4	Combustion Temperature	3
5	Discrete Monitoring	
5.1	Air Emissions Stack Test	4
5.2	Ash Testing	5
6	Exceedances	6
7	References	6
App	endix A – Stack Particulate Test	8
App	endix B - Ash Analysis Report5	55
Та	ble of Tables and Figures	
	le 2-1: Operating hours per month	2
Tab	le 3-1: Monthly and Annual Amounts of Fuel	2
	le 4-1: Maximum hourly NO _x as NO ₂ per month and average for the Month	
	le 5-1: Schedule A Discrete Monitoring Results	
	le 5-2: Schedule D Discrete Monitoring Results	
Tab	ic o 2. Ochedule D Discrete Monitoring Results	J
Fia	re 1-1: Normal Operating Profile for 2023	1
	re 5-1: Hourly Average Steam Production data for August 30, 2023 Discrete Testing	

Nomenclature and Abbreviations

C&D - Construction and Demolition waste

MoE - Ministry of Environment

NO₂ - Nitrogen Dioxide

NO_x - Nitrogen Oxides

O₂ - Molecular Oxygen

TEQ - Toxic Equivalency

USEPA - United States Environmental Protection Agency

hr - Hour

kg/s - Kilograms per Second

lb/hr - Pounds per Hour

m³/s - Cubic Meter per second

mg/kg - Milligrams per Kilogram (1 ppm)

mg/L - Milligrams per Liter

mg/m³ - Milligrams per cubic Meter

MW - Megawatt

pg/g – Picogram per Gram (0.001ppb)

ppb - Parts Per Billion

ppm - Parts Per Million (1,000 ppb)

ton/hr - Imperial Ton per Hour

tonnes/hr - Metric Tonnes per Hour

1 Introduction

An amendment was issued for permit 8808 on 18 September 2019 to Atlantic Power Preferred Equity Ltd located at 4455 Mackenzie Ave N, Williams Lake, B.C., V2G 4R7. The revised permit calls for an Annual Report outlined in Section 3.6 of the Permit [1].

Jacob Steyl P.Eng, Maintenance Manager and Chris Turner, Controls Specialist, were responsible for collecting data and compiling this report. A. Lanfranco & Associates Inc. and Bureau Veritas conducted discrete monitoring outlined in sections 3.1.2 Schedule A and 3.1.3 Schedule D of the Permit [1].

The reporting window for this Report is 00:00 on 1 January 2023 to 00:00 1 January 2024. The Plant was curtailed for extended periods during the year, as show in Figure 1-1 and Table 2-1.

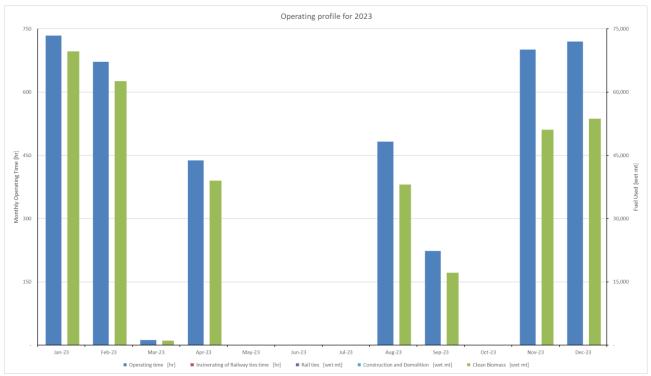


Figure 1-1: Normal Operating Profile for 2023

As no rail tie material was used as feedstock during the reporting period – Test Regimes Schedule A and D apply.

Corrective and preventative maintenance, as well as calibrations, were performed on the Air Emissions Controls and Continuous Emissions Monitoring System (CEMS) equipment of the Authorized Works during the reporting period.

2 Monthly Operating Hours

Table 2-1 shows the operating time and time incinerating railway ties for each month.

Table 2-1: Operating hours per month

	Operating time ¹	Incinerating of Railway ties time ²
	hr	hr
Jan-2023	734	0
Feb-2023	672	0
Mar-2023	12	0
Apr-2023	438	0
May-2023	-	0
Jun-2023	-	0
Jul-2023	-	0
Aug-2023	483	0
Sep-2023	223	0
Oct-2023	-	0
Nov-2023	700	0
Dec-2023	720	0
2023 Totals	3,982	0

3 Fuel

The fuel usage for the reporting period is shown in Table 3-1.

Table 3-1: Monthly and Annual Amounts of Fuel

Rail ties Construction and Demolition Clean Biomass					
	wet tonnes	wet tonnes	wet tonnes		
Jan-2023	0	0	69,619		
Feb-2023	0	0	62,586		
Mar-2023	0	0	1,100		
Apr-2023	0	0	39,012		
May-2023	0	0	1		
Jun-2023	0	0	-		
Jul-2023	0	0	-		
Aug-2023	0	0	38,067		
Sep-2023	0	0	17,208		
Oct-2023	0	0	ı		
Nov-2023	0	0	51,100		
Dec-2023	0	0	53,658		
2023 Totals	0	0	332,349		

¹ Operating time for Figure 1-1 and Table 2-1 is taken as combusting-biomass and breaker-closed time

² Number of hours incinerating rail ties or greater than 1% construction and demolition waste

4 Continuous Emissions Monitoring

4.1 Sulphur Oxides

No rail ties or greater than 1% C&D waste was used as feedstock during the reporting period, therefore no monitoring for Sulphur Oxides was required or conducted.

4.2 Nitrogen Oxides

The maximum hourly Nitrogen Oxides (NO_x) as Nitrogen Dioxide (NO_2) per month and average for the month at 8% O_2 is show Table 4-1. The Permitted hourly average is 320 mg/m³ at 8% O_2 [1].

Table 4-1: Maximum hourly NO_x as NO₂ per month and average for the Month

	Maximum Hourly Average mg/m ³	Monthly Average mg/m³
Jan-2023	292	233
Feb-2023	285	247
Mar-2023	263	254
Apr-2023	307	250
May-2023	1	-
Jun-2023	1	•
Jul-2023	1	•
Aug-2023	277	164
Sep-2023	254	221
Oct-2023	-	-
Nov-2023	289	224
Dec-2023	252	229

The average NO_x emissions for the year was 226 mg/m³ at 8% O₂. The maximum hourly average for the year is 307 mg/m³ at 8%O₂, below the Permitted level.

4.3 Hydrochloric Acid

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring for Hydrochloric Acid was required or conducted.

4.4 Combustion Temperature

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring of Combustion Temperature was required or conducted.

5 Discrete Monitoring

5.1 Air Emissions Stack Test

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule A applies.

The permitted levels under Schedule A [1] is stated in Table 5-1.

A. Lanfranco & Associates Inc was retained to perform an Emission Compliance Survey and Monitoring Report, as per Schedule A of the Permit. The Triplicate test average results for the listed parameters for the Main Stack on August 30, 2023 are summarised in Table 5-1. The complete report can be found in Appendix A – Stack Particulate Test.

Table 5-1: Schedule A Discrete Monitoring Results

Parameter	Test Average	Permit Limits	
Rate of Discharge (m³/s)	94.3	110	
Particulate (mg/m³ @ 8% O₂)	2.97	20	

Both parameter measures are below permitted levels.

The average steam flow during the Stack Test on August 30, 2023 was 599 klb/hr (75.4 kg/s). This meets the Operating Conditions requirements stipulated in section 3.3 of the Permit.

5.2 Ash Testing

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule D applies.

The permitted levels as per Schedule D [1] are stated in Table 5-2.

Bureau Veritas was commissioned to perform ash analysis on a single ash sample collected before ash conditioning during normal operation. The results from the test are summarised in Table 5-2. The complete reports can be found in Appendix B - Ash Analysis Report.

Table 5-2: Schedule D Discrete Monitoring Results

Parameter	Average	Permitted Limits [2]
Arsenic (mg/L)	<0.1	2.5
Barium (mg/L)	1.95	100
Boron (mg/L)	0.2	500
Cadmium (mg/L)	<0.1	0.5
Chromium (mg/L)	0.15	5
Copper (mg/L)	<0.1	100
Lead (mg/L)	<0.1	5
Mercury (mg/L)	<0.002	0.1
Selenium (mg/L)	<0.1	1
Silver (mg/L)	<0.01	5
Uranium (mg/L)	<0.1	10
Zinc (mg/L)	<0.1	500
Dioxin/Furan TEQ (ppb)	0.402	100
Polycyclic Aromatic Hydrocarbon TEQ (ppm)	0.026	100

Parameter values marked with a less-than sign (<) are below the Reportable Detection Limit.

All the parameters measured were well below the values stipulated in the Hazardous Waste Regulation [2].

The average steam flow when the Ash Test sample was collected on August 30th was 599 klb/hr (75.4 kg/s). This meets the Operating Conditions requirements stipulated in section 3.3 of the Permit.

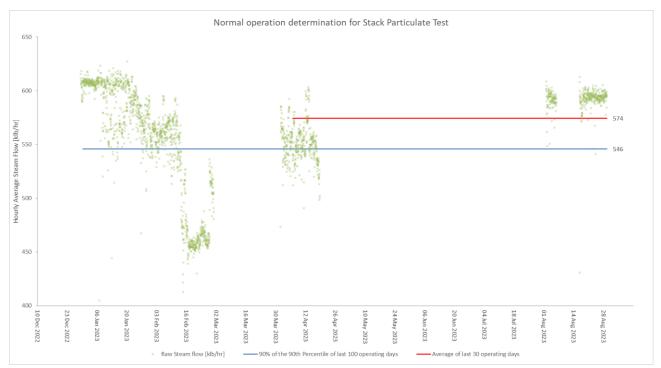
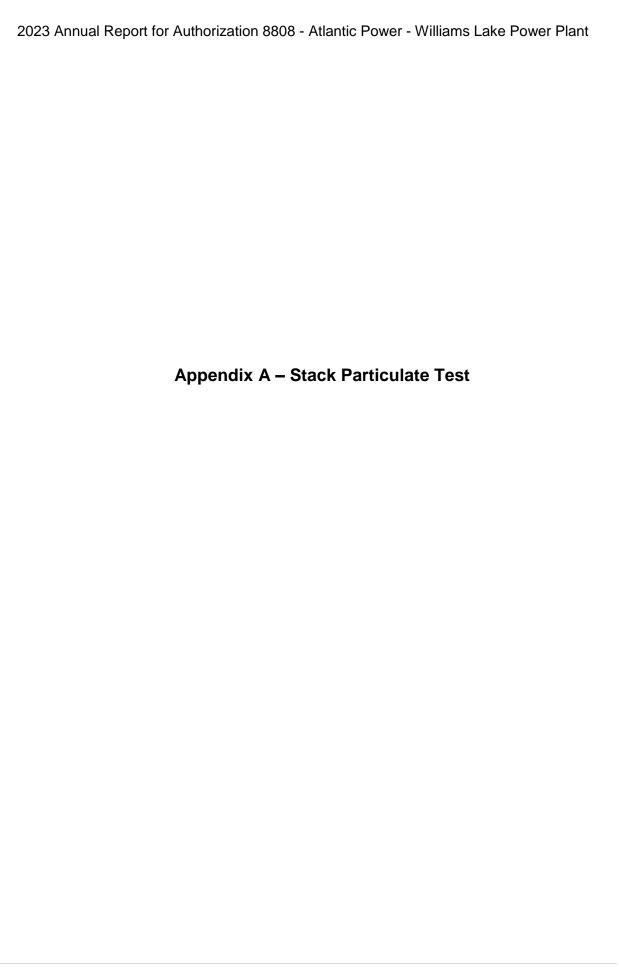
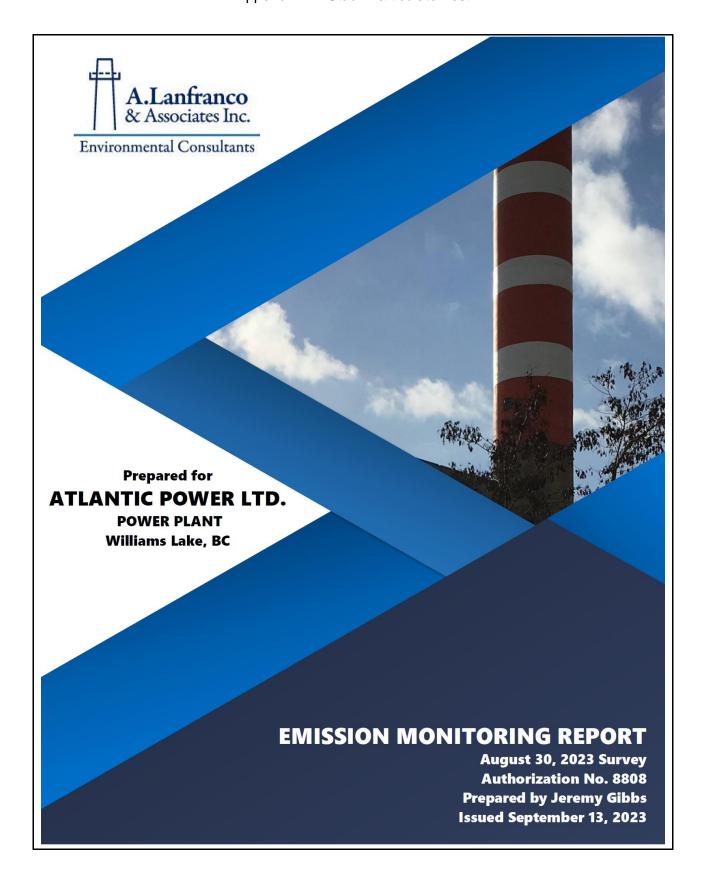


Figure 5-1: Hourly Average Steam Production data for August 30, 2023 Discrete Testing

6 Exceedances


No exceedances were recorded under normal operating conditions during the reporting period.


7 References

- [1] Ministry of Environment, "Permit 8808 Amended 18 September 2019," Environment Canada, Williams Lake, 2016.
- [2] Ministry of Attorney General, Hazardous Waste Regulation BC Reg 63/88, Victoria: Queens Printer, 1988.

Appendices

Appendix A – Stack Particulate Test	8
Appendix B - Ash Analysis	55

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual. The field crew consisted of:

Mr. J. Gibbs (certified) and Mr. B. Lester.

The report was prepared by Mr. J. Gibbs using reporting principles and guidelines generally acceptable to BC MOE.

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE approved reference methods for the parameters investigated.

Report reviewed on Sept.13, 2023 by:

Mark Lanfranco, CST President | Owner

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE OF CONTENTS

SUM	MMARY	1
1	TEST PROGRAM ORGANIZATION and INTRODUCTION	2
2	PROCESS DESCRIPTION	3
3	METHODOLOGY	3
3.	1 Sampling Techniques	3
3.	2 Analytical Techniques	7
4	RESULTS	7
5	DISCUSSION OF RESULTS	10

APPENDICES

Appendix 1 - Computer Outputs of Measured and Calculated Data

Appendix 2 - Calculations

Appendix 3 - Field Data Sheets

Appendix 4 - Site Map

Appendix 5 - Calibration Data and Certifications

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

SUMMARY

The following table presents the triplicate test average results for the listed parameters for the Biomass fuelled boiler stack on August 30, 2023.

Parameter	Average	Permit Limits
Particulate (mg/Sm ³)	3.81	
Particulate (mg/Sm ³ @ 8% O ₂)	2.97	20
Particulate (kg/hr)	1.29	
Flowrate (Sm ³ /min)	5660	
Flowrate (Sm ³ /sec)	94.3	110
O ₂ (vol % dry)	4.21	
CO ₂ (vol % dry)	16.4	

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

The 3-run average boiler stack results for total particulate (2.97 mg/Sm 3 @ 8% O₂) is marginally higher than the previous results from October 2022 (1.9 mg/Sm 3 @ 8% O₂).

The 3-run average flowrate on the boiler stack for this survey is less than last October (94.3 compared to $97.7 \text{ m}^3/\text{min}$) and is below the permitted limit. The variability year to year is not significant and well within the range of outcomes during representative operating conditions.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TEST PROGRAM ORGANIZATION and INTRODUCTION

Plant Testing Coordinator: Mr. Jacob Steyl

Maintenance Manager

4455 Mackenzie Avenue North Williams Lake, B.C. Canada V2G 5E8

Tel: (250) 267-2281

Email: steyl@atlanticpower.com

Project Manager/Sampling Mr. Mark Lanfranco **Contractor:**

President | Owner

A. Lanfranco and Associates Inc. 101-9488 189 St

Surrey, B.C. Canada V4N 4W7

Tel: (604) 881-2582

Email: mark.lanfranco@alanfranco.com

Sampling Crew:

Mr. J. Gibbs - A. Lanfranco and Associates Inc. Mr. B. Lester - A. Lanfranco and Associates Inc.

Atlantic Power Corporation commissioned A. Lanfranco & Associates Inc. to conduct an emission survey at their Power Plant in Williams Lake, BC. Emission tests were conducted on a wastewood fired co-generation power plant authorized by British Columbia Ministry of Environment (BC MOE) Permit PA-8808.

On August 30, 2023, triplicate emission tests were performed for the following parameters:

- particulate concentration and emission rate
- discharge rate (flow rate)
- gas composition (CO2, O2 and moisture)

A. Lanfranco and Associates was responsible for the gravimetric analysis for this survey. Justin Ching, the lab manager for ALAA can be reached at 604-881-2582.

This report contains details of the test results and methodologies utilized.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

2 PROCESS DESCRIPTION

The process under investigation during this survey is a wood fuelled Boiler (E218415) discharging through a 3.5-meter stack. The process discharges to atmosphere following emission control by multi-clones, and a five-field electrostatic precipitator.

On August 30, 2023 the facility was operating at greater than 90% capacity relative to the previous 100 days. Operational data can be found in Table 3 of the results section.

3 METHODOLOGY

The sampling and analytical methods used throughout this survey conform to the procedures outlined in the BC source testing code and the BC air analytical manual. The following table shows the methodology followed.

<u>Parameter</u>	Reference Method
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse Points
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Gas molecular weight (O ₂ /CO ₂)	EPA Method 3 Gas Analysis for the Determination of Dry Molecular Weight
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content
Particulate Matter	EPA Method 5 Determination of Particulate Matter Emissions from Stationary Sources

3.1 Sampling Techniques

Sampling of particulate (EPA Method 5) from the Main Stack was conducted using CAE and Apex sampling trains equipped with heated filter assemblies and a heated four-foot probe (Fig. 1). The impinger sections of the sampling trains were charged with de-ionized water for moisture determination. Cyclones were not used as part of the sampling apparatus.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

The stack was checked for cyclonic flow using methods outlined in the source test code. No cyclonic flow condition existed.

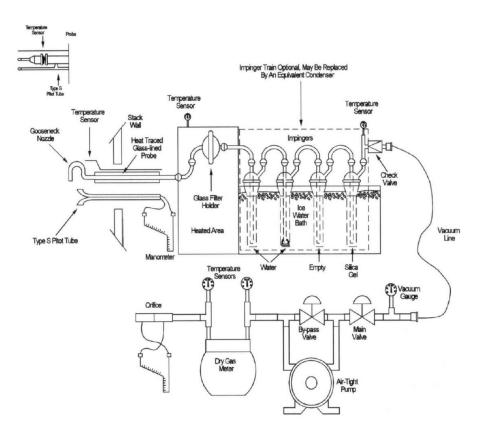


Figure 1: Method 5 Particulate Train

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

EPA Method 1

Sampling Site and Traverse Points

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the crosssection of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas. At Williams Lake, four traverses of 3 points for a total of 12 points were measured per test.

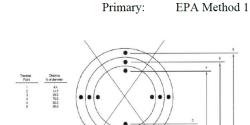


Figure 2. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Each point (equal area method) was sampled for 5 minutes (figure 4/4a) resulting in final sample volumes of about 1.2 cubic meters.

Stack Gas Velocity and Volumetric Flow Rate

The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an S-type pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to Stack gas volumetric flow rate is occur. determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

Primary: EPA Method 2

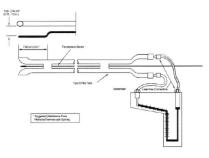


Figure 3. Type S Pitot Tube Manometer Assembly

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

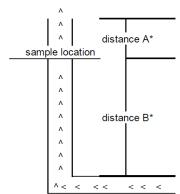
Figure - 4 Location of Traverse Points in Circular Stacks

(inches from inside w all to traverse point)

Client Stack I.D.: Atlantic Power

 Diameter (inches)
 138

 Total Points
 12


 # of Ports Used
 4

 Points / Traverse
 3

Diameters Upstream: > 2

Diameters Downstream: > 8

Point	Distance from Wall		
1	6.1		
2	20.1		
3	40.8		

* distance A: duct diameters upstream from flow disturbance
* distance B: duct diameters downstream from flow disturbance

< < < : flow direction

Figure 4a Location of Traverse Points in Circular Stacks

(percent of diameter from inside wall to traverse point)

Traverse Point Number on a	Number of Traverse Points on a Diameter					
Diameter	2	4	6	8	10	12
1	14.6%	6.7%	4.4%	3.2%	2.6%	2.1%
2	85.4%	25.0%	14.6%	10.5%	8.2%	6.7%
3		75.0%	29.6%	19.4%	14.6%	11.8%
4		93.3%	70.4%	32.3%	22.6%	17.7%
5			85.4%	67.7%	34.2%	25.0%
6			95.6%	80.6%	65.8%	35.6%
7				89.5%	77.4%	64.4%
8				96.8%	85.4%	75.0%
9					91.8%	82.3%
10					97.4%	88.2%
11						93.3%
12						97.9%

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

A.Lanfranco & Associates Inc.

Molecular Weight by Gas Analysis

Primary:

EPA Method 3/3a

An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Moisture Content

Primary:

EPA Method 4

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

3.2 Analytical Techniques

Gravimetric analysis of the particulate samples was conducted by A. Lanfranco and Associates Inc. at their Surrey laboratory. All filters were conditioned by 105 °C drying, desiccation for 24 hours, and weighing of the particulate.

Probe washings were evaporated to dryness in porcelain dishes, desiccated for 24 hours and weighed. Blanks were carried through all procedures.

4 RESULTS

The results of the particulate and stack parameters were calculated using a computer program consistent with reporting requirements of BC MOE. Standard conditions used were 20 $^{\circ}$ C and 101.325 kPa (dry). Particulate concentrations were corrected to 8% O₂.

The "actual" flowrates results are volumetric flowrates at stack conditions. Detailed test results are presented in Table 1. Supporting data is presented in Table 2 and the Appendices. Calculations are presented in Appendix 2.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

${\bf TABLE~1:\underline{MAIN~STACK~EMISSION~RESULTS}}$

Parameter	Test 1	Test 2	Test 3	Average
Test Date	30-Aug-23	30-Aug-23	30-Aug-23	
Test Time	10:10 - 11:14	11:24 - 12:28	12:40 - 13:44	
Duration (minutes)	60	60	60	60
D (1 ((G 3)	2.55	2.20	5.50	2.01
Particulate (mg/Sm ³)	2.55	3.28	5.59	3.81
Particulate (mg/Sm ³ @ 8% O ₂)	1.93	2.48	4.50	2.97
Particulate (kg/hr)	0.88	1.11	1.88	1.29
Particulate (kg/day)	21.0	26.6	45.2	30.9
Flowrate (Sm ³ /min)	5717	5639	5615	5657
Flowrate (Sm ³ /sec)	95.3	94.0	93.6	94.3
Flowrate (Am ³ /min)	10859	10965	10955	10927
Temperature (°C)	157	161	160	159
O ₂ (vol% dry)	3.88	3.88	4.88	4.21
CO ₂ (vol % dry)	16.4	16.5	16.3	16.4
H ₂ O (vol%)	15.8	17.1	17.4	16.8
Isokinetic Variation (%)	102	103	103	103

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE 2: OPERATING CONDITIONS

	Steam Flow	Steam Flow	Steam Flow
	30-Aug-23	Prev. 100 days	% of Average
	(K lbs./hour)	(K lbs./hour)	(%)
Boiler Stack	599	603	99.3

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

5 DISCUSSION OF RESULTS

The average particulate result for this survey was 2.97 mg/Sm^3 @ $8\% \text{ O}_2$ and is well below the permitted level of 20 mg/Sm^3 @ $8\% \text{ O}_2$. The results for particulate matter are quite comparable to previous results from this source. The results do not include condensable particulate matter.

The average flow rate measurement of 94.3 Sm³/sec was also within the allowable limit of 110.0 Sm³/sec.

On the test day the weather was warm and dry. Winds were calm. There were no environmental factors which impacted the testing.

There were no technical problems encountered in sample collection or analysis. Samples were collected isokinetically at all points and sampling equipment was operated in a normal steady manner during testing. The test results, therefore, are considered to be an accurate representation of emission characteristics for the process conditions maintained on the test date.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

APPENDIX 1 COMPUTER OUTPUTS OF MEASURED AND CALCULATED DATA
AND CALCULATED DATA

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:30-Aug-23Jobsite:Williams Lake, B.C.Run:1 - ParticulateSource:Main StackRun Time:10:10 - 11:14

Particulate Concentration: 2.6 mg/dscm 0.0011 gr/dscf

1.3 mg/Acm 0.0006 gr/Acf

1.9 mg/dscm (@ 8% O2) 0.0008 gr/dscf (@ 8% O2)

Emission Rate: 0.88 Kg/hr 1.931 lb/hr

Sample Gas Volume: 1.1358 dscm 40.112 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 102.3 %

Flue Gas Characteristics

Moisture: 15.79 %

Temperature $157.4 \, ^{\circ}\text{C}$ $315.3 \, ^{\circ}\text{F}$

Flow 5716.9 dscm/min 201893 dscf/min 201893 dscf/min 3364.0 dscf/ges

95.28 dscm/sec 3364.9 dscf/sec 10859.3 Acm/min 383496 Acf/min

Velocity 18.756 m/sec 61.54 f/sec

 $\textbf{Gas Analysis} \hspace{1.5cm} 3.88 \% \hspace{0.05cm} O_{2} \hspace{1.5cm} 16.38 \hspace{0.05cm} \% \hspace{0.05cm} CO_{2}$

 $30.775 \ \mathrm{Mol.} \ \mathrm{Wt} \ (\mathrm{g/gmole}) \ \mathrm{Dry} \\ \hspace{2cm} 28.758 \ \mathrm{Mol.} \ \mathrm{Wt} \ (\mathrm{g/gmole}) \ \mathrm{Wet}$

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Condensate Collection:

Impinger 1 (grams) 125.0 Impinger 2 (grams) 25.0 Impinger 3 (grams)

Total Gain (grams) 159.8

Impinger 4 (grams)

1.0

8.8

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 30-Aug-23 Jobsite: Williams Lake, B.C. Run: 1 - Particulate 10:10 - 11:14 Source: Main Stack Run Time:

Control Unit (Y)	1.0051	483 CO ₂ O ₂ 423 16.50 4.00		
Nozzle Diameter (in.)	0.2483	CO_2	O_2	
Pitot Factor	0.8423	16.50	4.00	
Baro. Press. (in. Hg)	27.50	16.50	3.50	
Static Press. (in. H ₂ O)	-0.37	16.50	4.00	
Stack Height (ft)	200	16.00	4.00	
Stack Diameter (in.)	138.0	$Average = \underline{16.38}$	3.88	

Stack Area (sq.ft.) 103.869 Minutes Per Reading 5.0

5.0 Minutes Per Point Port Length (inches) 8.0

Collection:

0.0010 Filter (grams) 0.0019 Washings (grams) Impinger (grams) 0.0000Total (grams) 0.0029

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	outlet (°F)	re Stack (°F)	Wall Dist. (in.)	Isokin.
		0.0	296.177							
1	1	5.0	299.370	0.560	1.53	79	79	313	6.1	102.2
	2	10.0	302.930	0.700	1.91	79	79	315	20.1	102.2
	3	15.0	306.590	0.740	2.02	78	78	314	40.8	102.3
		0.0	306.590							
2	1	5.0	310.380	0.790	2.16	79	79	315	6.1	102.4
	2	10.0	314.400	0.890	2.43	79	79	314	20.1	102.4
	3	15.0	318.140	0.770	2.11	80	80	315	40.8	102.2
		0.0	318.140							
3	1	5.0	321.190	0.510	1.40	81	81	315	6.1	102.0
	2	10.0	324.610	0.640	1.75	81	81	315	20.1	102.2
	3	15.0	328.270	0.730	2.01	82	82	315	40.8	102.3
		0.0	328.270							
4	1	5.0	332.240	0.860	2.36	82	82	317	6.1	102.5
	2	10.0	336.250	0.880	2.41	82	82	318	20.1	102.4
	3	15.0	340.370	0.930	2.54	82	82	318	40.8	102.4
			Average:	0.750	2.053	80.3	80.3	315.3		102.3

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:30-Aug-23Jobsite:Williams Lake, B.C.Run:2 - ParticulateSource:Main StackRun Time:11:24 - 12:28

Particulate Concentration: 3.3 mg/dscm 0.0014 gr/dscf

1.7 mg/Acm 0.0007 gr/Acf

2.5 mg/dscm (@ 8% O2) 0.0011 gr/dscf (@ 8% O2)

Emission Rate: 1.11 Kg/hr 2.446 lb/hr

Sample Gas Volume: 1.1285 dscm 39.855 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 103.0 %

Flue Gas Characteristics

Moisture: 17.14 %

 $\begin{tabular}{lll} \textbf{Temperature} & 160.6 \ ^{\circ}\text{C} & 321.0 \ ^{\circ}\text{F} \end{tabular}$

Flow 5639.2 dscm/min 199149 dscf/min 199149 dscf/min 3310.1 dscf/gap

93.99 dscm/sec 3319.1 dscf/sec 10965.2 Acm/min 387237 Acf/min

Velocity 18.939 m/sec 62.14 f/sec

 $\textbf{Gas Analysis} \hspace{1.5cm} 3.88 \% \hspace{0.05cm} O_{2} \hspace{1.5cm} 16.45 \hspace{0.1cm} \% \hspace{0.05cm} CO_{2}$

 $30.787 \ Mol. \ Wt \ (g/gmole) \ Dry \\ 28.596 \ Mol. \ Wt \ (g/gmole) \ Wet$

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 30-Aug-23 Jobsite: Williams Lake, B.C. Run: 2 - Particulate Source: 11:24 - 12:28 Main Stack Run Time:

Control Unit (Y)	1.0051	Gas Analysis (Vol. %):					
Nozzle Diameter (in.)	0.2483	CO_2	O_2				
Pitot Factor	0.8423	16.50	3.80				
Baro. Press. (in. Hg)	27.50	16.50	4.00				
Static Press. (in. H ₂ O)	-0.37	16.00	4.00				
Stack Height (ft)	200	16.80	3.70				
Stack Diameter (in.)	138.0	$Average = \underline{16.45}$	3.88				
Stack Area (sq.ft.)	103.869						

Total Gain (grams) 175.1

Impinger 4 (grams)

Impinger 1 (grams) 151.0 Impinger 2 (grams) 15.0 Impinger 3 (grams)

0.0

9.1

Condensate Collection:

5.0 Minutes Per Point Collection: Port Length (inches) 8.0

5.0

Minutes Per Reading

0.0020 Filter (grams) 0.0017 Washings (grams) Impinger (grams) 0.0000Total (grams) 0.0037

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	Outlet (°F)	Stack (°F)	Wall Dist. (in.)	Isokin. (%)
		0.0	340.870							Т
1	1	5.0	344.830	0.870	2.34	82	82	321	6.1	103.2
	2	10.0	348.810	0.880	2.37	82	82	321	20.1	103.2
	3	15.0	352.930	0.940	2.54	83	83	320	40.8	103.1
		0.0	352.930							
2	1	5.0	356.000	0.520	1.41	84	84	321	6.1	102.9
	2	10.0	359.410	0.640	1.73	84	84	321	20.1	103.1
	3	15.0	363.100	0.750	2.30	84	84	321	40.8	103.2
		0.0	363.100							
3	1	5.0	366.870	0.798	2.13	82	82	321	6.1	102.6
	2	10.0	370.870	0.890	2.40	82	82	321	20.1	103.1
	3	15.0	374.600	0.770	2.08	83	83	321	40.8	103.1
		0.0	374.600							
4	1	5.0	377.810	0.570	1.54	84	84	322	6.1	102.9
	2	10.0	381.340	0.690	1.86	84	84	322	20.1	102.9
	3	15.0	385.002	0.740	2.00	83	83	320	40.8	103.2
			Average:	0.755	2.058	83.1	83.1	321.0		103.0

A. Lanfranco and Associates Inc. - Emission Report

Client:Atlantic PowerDate:30-Aug-23Jobsite:Williams Lake, B.C.Run:3 - ParticulateSource:Main StackRun Time:12:40 - 13:44

Particulate Concentration: 5.6 mg/dscm 0.0024 gr/dscf

2.9 mg/Acm 0.0013 gr/Acf

4.5 mg/dscm (@ 8% O2) 0.0020 gr/dscf (@ 8% O2)

Emission Rate: 1.88 Kg/hr 4.150 lb/hr

Sample Gas Volume: 1.1276 dscm 39.820 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 103.4 %

Flue Gas Characteristics

Moisture: 17.43 %

 $\begin{tabular}{lll} \textbf{Temperature} & 160.5 \ ^{\circ}\text{C} & 320.8 \ ^{\circ}\text{F} \end{tabular}$

Flow 5615.1 dscm/min 198297 dscf/min 93.58 dscm/sec 3304.9 dscf/sec

93.58 dscm/sec 3304.9 dscf/sec 10955.0 Acm/min 386876 Acf/min

Velocity 18.921 m/sec 62.08 f/sec

Gas Analysis 4.88 % O₂ 16.25 % CO₂

 $30.795 \ Mol. \ Wt \ (g/gmole) \ Dry \\ \hspace{2cm} 28.565 \ Mol. \ Wt \ (g/gmole) \ Wet \\$

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 30-Aug-23 Jobsite: Williams Lake, B.C. Run: 3 - Particulate Source: 12:40 - 13:44 Main Stack Run Time:

Control Unit (Y)	1.0051	Gas Analysis (Vol. %):
Nozzle Diameter (in.)	0.2483	CO_2	O_2
Pitot Factor	0.8423	16.50	4.50
Baro. Press. (in. Hg)	27.50	16.00	5.00
Static Press. (in. H ₂ O)	-0.37	16.50	5.00
Stack Height (ft)	200	16.00	5.00
Stack Diameter (in.)	138.0	$Average = \underline{16.25}$	4.88
Stack Area (sq.ft.)	103.869		

Impinger 4 (grams)

Condensate Collection:

Total Gain (grams) 178.6

Impinger 1 (grams) 155.0 Impinger 2 (grams) 15.0 Impinger 3 (grams)

0.0

8.6

5.0 5.0 Minutes Per Point Collection: Port Length (inches) 8.0

Minutes Per Reading

0.0020 Filter (grams) Washings (grams) 0.0043Impinger (grams) 0.0000Total (grams) 0.0063

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	os Temperatur Outlet (°F)	e Stack (°F)	Wall Dist. (in.)	Isokin. (%)
		0.0	385.744							Т
1	1	5.0	388.970	0.570	1.55	86	86	321	6.1	103.2
	2	10.0	392.540	0.700	1.90	86	86	322	20.1	103.3
	3	15.0	396.200	0.730	1.99	87	87	321	40.8	103.4
		0.0	396.200							
2	1	5.0	400.040	0.800	2.18	88	88	321	6.1	103.5
	2	10.0	404.070	0.880	2.40	90	90	322	20.1	103.3
	3	15.0	407.830	0.760	2.08	91	91	322	40.8	103.5
		0.0	407.830							
3	1	5.0	410.950	0.520	1.43	93	93	320	6.1	103.1
	2	10.0	414.450	0.650	1.79	93	93	318	20.1	103.4
	3	15.0	418.180	0.740	2.04	94	94	319	40.8	103.2
		0.0	418.180							
				0.000	2.26		92	224	6.1	
4	1	5.0	422.190	0.860	2.36	92		321		103.6
	2	10.0	426.240	0.880	2.41	92	92	321	20.1	103.4
	3	15.0	430.434	0.940	2.58	93	93	322	40.8	103.5
			Average:	0.753	2.059	90.4	90.4	320.8		103.4

Appendix 2 Calculations

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-12 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 13-27 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 28-30 were used to calculate the volumetric flowrate of the stack flue gas.

Contaminant Concentration Calculations
$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 5
$$V_{samp} = V_{final} - V_{tnit}$$
 Equation 6
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}, \text{ where } n = \text{the number of points}$$
 Equation 8
$$OC = \frac{20.9 - \% O_{2c}}{20.9 - \% O_{2m}}$$
 Equation 9
$$CO2C = \frac{\% CO_{2c}}{\% CO_{2m}}$$
 Equation 10
$$\% O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% O_{2i}, \text{ where } n = \text{the number of } O_2 \text{ measurements}$$
 Equation 11
$$\% CO_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% CO_{2i}, \text{ where } n = \text{the number of } CO_2 \text{ measurements}$$
 Equation 12

Appendix 2 Calculations

Where,

Vsamp

= Contaminant concentration $\boldsymbol{\mathcal{C}}$

m = Contaminant mass

 m_i = Net analytical mass (mg, ng, or μg) = Analytical mass $(mg, ng, or \mu g)$ *Mana,i Mblank* = Blank analytical mass (mg, ng, or μg)

*m*part = Total particulate mass (mg) = Net particulate gain from filter (mg) *Mfilter* = Net particulate gain from probe wash (mg) m_{pw} = Sample volume at standard conditions (ft³) $V_{std(imp)}$ = Sample volume at standard conditions (m³) V_{std} = Sample volume at actual conditions (ft³)

Vfinal = Final gas meter reading (ft³) Vinit = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_{m} = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

= Average of individual point orifice pressures (inches of H_2O) ΔH_{ave} $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC= Oxygen correction factor (dimensionless) CO2C = Carbon dioxide correction factor (dimensionless) %O_{2c} = Oxygen concentration to correct to (% dry basis)

%O2m = Average measured stack gas oxygen concentration (% dry basis) %CO_{2c} = Carbon dioxide concentration to correct to (% dry basis) %CO_{2m} = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

A.Lanfranco & Associates Inc.

Appendix 2 Calculations

A2.2 Isokinetic Variation Calculations

$$\Delta H_{l} = \frac{2.62 \times 10^{7} \times c_{p} \times A_{n} \times (1 - B_{wo}) \times M_{D} \times (T_{m} + 459.67) \times \Delta p_{l}}{k_{o} \times M_{w} \times (T_{Stk} + 459.67)} \qquad \text{Equation 13}$$

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{stk_{l}} + 459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{l}} + 459.67) \times (1 - B_{wo})}{(T_{stk_{l}} + 459.67) \times y} \qquad \text{Equation 14}$$

$$A_{n} = \pi \left(\frac{d_{n}}{24}\right)^{2} \qquad \qquad \text{Equation 15}$$

$$M_{w} = M_{D} \times (1 - B_{wo}) + 18 \times B_{wo} \qquad \qquad \text{Equation 16}$$

$$M_{D} = 0.44 \times \% CO_{2} + 0.32 \times \% O_{2} + 0.28 \times (100 - \% CO_{2} - \% O_{2}) \qquad \qquad \text{Equation 17}$$

$$T_{Stk} = \frac{1}{n} \sum_{l=1}^{n} T_{Stk_{l}}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation 19}$$

$$V_{cond} = 0.04707 \times V_{gain} \qquad \qquad \text{Equation 20}$$

$$Iso = \frac{1}{n} \sum_{l=1}^{n} Iso_{l}, \text{ where } n = \text{the number of points} \qquad \qquad \text{Equation 21}$$

$$Iso_{l} = \frac{v_{nsl}}{v_{l}} \qquad \qquad \text{Equation 22}$$

$$v_{l} = 85.49 \times c_{p} \times \sqrt{\Delta p_{l}} \times \sqrt{\frac{(T_{Stk_{l}} + 459.67)}{(P_{Stk}} \times M_{W})}} \qquad \qquad \text{Equation 23}$$

$$v_{nzl} = \frac{(V_{l} - V_{l-1}) \times y \times (T_{Stk_{l}} + 459.67) \times (P_{B} + \frac{\Delta H_{l(act)}}{13.6})}{A_{n} \times t_{l} \times 60 \times (T_{m(l)} + 459.67) \times P_{stk} \times (1 - B_{wo})} \qquad \qquad \text{Equation 25}$$

Appendix 2 Calculations

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 26

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
 , where $n =$ the number of points

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H_2O)

 P_g = Stack Static pressure (inches of H₂O) P_{stk} = Absolute stack pressure (inches of Hg) M_w = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

%CO₂ = Stack gas carbon dioxide concentration (% dry basis)
 %O₂ = Stack gas oxygen concentration (% dry basis)
 B_{wo} = Stack gas water vapour, proportion by volume

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

(ft³)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg) V_{stk} = Average flue gas velocity (ft/sec) V_{nz} = Individual point flue gas velocity (ft/sec) V_{nzi} = Individual point velocity at nozzle(ft/sec) V_{nzi} = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

A.Lanfranco & Associates Inc.

Appendix 2 Calculations

A2.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
 Equation 28
$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 29

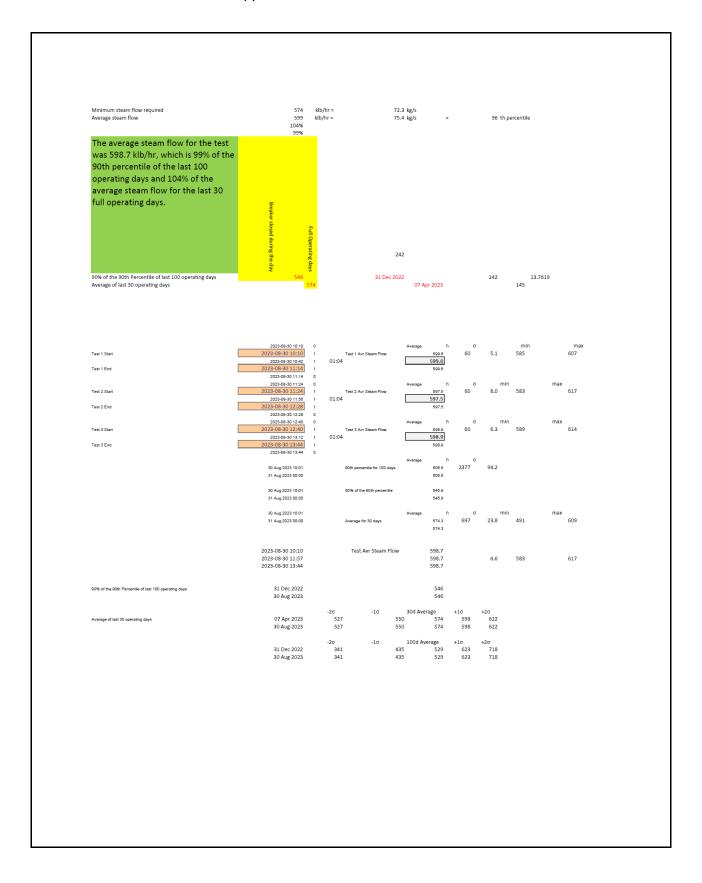
$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 30

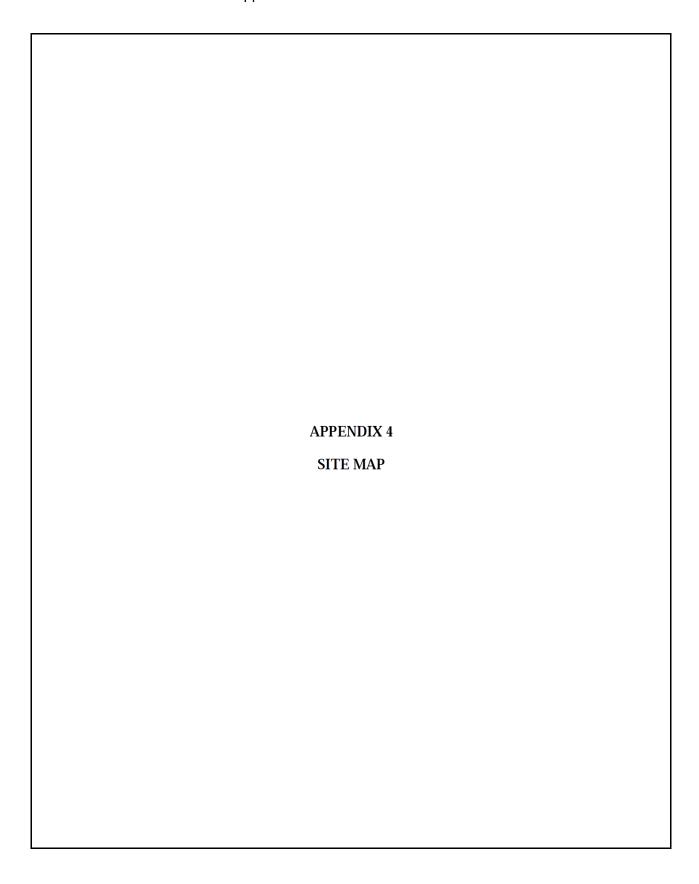
Where,

 $Q_A = Actual flowrate (Am^3/min)$

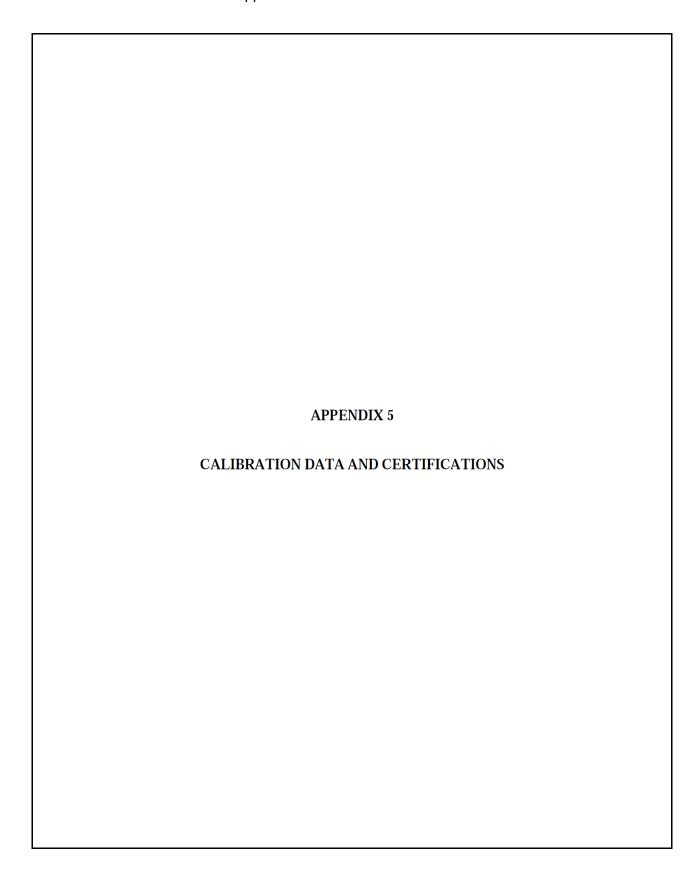
 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)


d = Diameter of stack (inches)


APPENDIX 3
FIELD DATA SHEETS

#	TOTAL GAIN	(mL)	Fu.)																							
	FINAL	(mL)	125	12				ites	0° Vol.		110		2,5			2,0		01/1								
	INITIAL	(mL)	001	1	1000		meters	Fyrites	CO ₂		10.5		16,5		1	16.5		160								
		VOLUMES	lmp. #2	Imp. #3	Imp. #5	lmp. #6	Upstream Diameters Downstream Diameters	Pump Vac	N. Hg	4.0	40	8.5		2,5	017	40	8.0		5.0							
	1 58/2		T		T		٥۵		Impinger	Ħ	88	25	П	20	88	85	38	П	5.4			Ħ	T			
		Cp ,8423	2,0	- 37	290		24		Box	232	24/3	267	Н	8752	282	253	752	Н	120							
	DIAME						100001	Temperature °F	Probe	250	6 M2	60%		55	232	787	28		343					è		
	12-56	5	I	SURE, IN. F		ш	T		Stack	313	3/45	2/5	394	315	3/5	215	317	818	212							
	NOZZLE 3	PROBE 5A	PORT LENGTH	STATIC PRESSURE, IN. H20	STACK HEIGHT		INITIAL LEAK TEST FINAL LEAK TEST		Dry Gas	et.	22	T	of.		Ħ	7	÷	22	28							
		e.				60		Orifice AH	IN. H ₂ O	5.5.7	4.02	2.16	247	246	05:7	2.01	2,36	1/1/2	7127							
	1				Y 1.0051	E B	200	Pitot AP	IN. H ₂ O	15%	140	ac.	189	12	121	252	983	88'	1913		4					
sociates Inc.	3	1,000	OMITIC/14	1	7		JRE, IN. Hg	Dry Gas Meter ff	t-t. 1 962	199,3+	302: 93	2/0.28	34.40	218, 14	61 125	374.27	H2.788.	334.25	EWD Fest							
A. Lanfranco and Associates Inc.	~	CE MALL	PARAMETER / RUN No	DATE 4,32,23	CONTROL UNIT		BAROMETRIC PRESSURE, IN. Hg ASSUMED MOISTURE, BW	Clock Time	T	П									ph:17	0.00						
A. Lan	CLIENT	SOURCE	PARAL	DATE	CONTR		ASSUN		Point	~	ca) -	0	77		di		2	7							


K	TOTAL GAIN (mL)						-				1			$\ $	\parallel	-		\parallel						
	FINAL (mL)	137	20	-+-	-		ses	O ₂	6	26 %		4,3		0%		62				Ħ			,	
	(mL)	+		Car	-	Downstream Diameters	Fyrites	CO ₂		ller		16,5		16.0		16.56						1		
	IMPINGER	Imp. #1	Imp. #2	Imp. #4 Imp. #5	Imp. #6	Downstream	Pump Vac.	IN. Hg	8 %	5.0	7	,	24	45	Mis	4.5	1	4.5			\coprod			
	283							Impinger Exit	2.5	57	25		23	40	\$	26		26			\parallel			
	DIAMETER, IN. 2	4	37	158.0	1	15-4	'F	Box	1240	248	200	1	222	247	248	282	Н	283						
	DIAME		1,1	7,		251(Basa	Temperature °F	Probe	250	251	636	2	152	280	282	280		52						
	62-5	nu.	ESSURE, IN.	STACK DIAMETER STACK HEIGHT	1901	.]]		Stack	326	320	30	126	351	128	125	327	202	220						
	NOZZLE 55-29	UTOWN LEGOD	STATIC PR	STACK DIA STACK HEI	INITIAL LEAK TEST	FINAL LEAK TEST		Dry Gas Outlet	225	2	170	24	68	28	30	128	88	22	4					
	,						Orifice AH	IN. H ₂ O	7.34	234	1.41	1.33	2,00	212	2,08	1,54	1.86	7,00						
	1	64	1	Y 1.005	AH@ 2,209	000	Pitot AP	IN. H ₂ O	18:	76,	20	ich	14		10	53	169,	he						
iates Inc.	ic pow		/ SCIMI	186		126	Dry Gas Meter ft	340,870	(8) 6	52,93	(L. 00)	24.41	63,10	18.84	2017	18:+2	1861.34	PAS LOS						
A. Lanfranco and Associates Inc.	4thant	SOURCE / W. S.	8.36.23	L UNIT	NI DELISSE DE LA PIENTE	ASSUMED MOISTURE, BW	Clock Time	2 12:1	75	J.	2	2	3			7	4	82/7/						
A. Lanfra	CLIENT	SOURCE	DATE	OPERATOR: CONTROL UNIT	PADOME	ASSUME		Point //		10	-	2	3	H	200	-	2	7						

F	TOTAL GAIN (mL)	
7	(mL) (CML) (Vol. % Vol. % Vol. % S. O
	IMPINGER INITIAL IND. #1 (mc) Imp. #1 (mc) Imp. #3 (mc) Imp. #4 (mc) Imp. #4 (mc) Imp. #5 Imp. #5 Imp. #6 Imp.	CO ₂ Vol. % Vol. %
	IMPINGER, INITIA VOLUMES (mL) Imp. #1 (m.e. #2 m.e. #3 m.e. #4 m.e. #5 m.e. #5 m.e. #5 m.e. #6 m.e. #6	Pump Vac.
	8 15 15 15 15 15 15 15 15 15 15 15 15 15	Box Impinger Exit 25
	Co C	Temperature o'F Probe Box 250 257 251 257 251 257 250
	M H	Stack
	PROBE SC. PROBE SC. PROBE SC. PROBE STATIC PRESSURE STACK DIAMETER STACK HEIGHT INITIAL LEAK TEST FINAL LEAK TEST	Dry Gas Outlet 222 223 Conflet 222 223 223 223 223 223 223 223 223 22
	100	Orifice AH
	V V V V V V V V V V V V V V V V V V V	` - - - - - - - - - - - - - - - - -
iates Inc.	SC Johney School School	285, 744 385, 744 388, 97 400, 67 407, 83 410, 63 410,
A. Lanfranco and Associates Inc.	A + M. TER / RUN No. 61.0 S. 10.2 S.	2:40 2:40 2:40 2:40 2:40 2:40 2:40 2:40
A. Lanfra	CLIENT A SOURCE MEASOURCE MEASOURCE MEASONE CONTROL UNIT BAROMETRIC PASSUMED MOIS	Point Por John Pro-

		BAROMETEI	R CALIBRATION	FORM		
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	10-Jul-23	101.6	30.01	29.92	29.99	0.02
DS	10-Jul-23	101.6	30.01	29.91	29.98	0.03
CL	10-Jul-23	101.6	30.01	29.92	29.99	0.02
JC	10-Jul-23	101.6	30.01	29.89	29.96	0.05
LF	10-Jul-23	101.6	30.01	29.91	29.98	0.03
SH	10-Jul-23	101.6	30.01	29.90	29.97	0.04
CDO	10-Jul-23	101.6	30.01	29.89	29.96	0.05
JG	10-Jul-23	101.6	30.01	29.87	29.94	0.07
ML	10-Jul-23	101.6	30.01	29.89	29.96	0.05
BL	10-Jul-23	101.6	30.01	29.91	29.98	0.03

Calibrated by:

Daryl Sampson

Signature: <u>Daryl Sampson</u>

Date:

10-Jul-23

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74 metric e.html

Pitot Tube Calibration

27-Jun-23 Date:

Temp (R): 539 Dn (in.): 0.25

Pbar (in.Hg): 29.84

Pitot ID: 5A-1 S-Type Pitot Deviation Reference Air Pitot Pitot Velocity Coeff. (absolute) (in H2O) Cp 0.8518 0.8574 (in H2O) (ft/s) 0.0059 0.057 0.077 16.0 0.0115 0.0116 0.240 0.345 0.180 28.4 0.245 33.1 0.8343 0.425 0.570 43.6 0.8549 0.0090 0.560 0.795 50.0 0.8309 0.0149 Average : 0.8458 0.0106

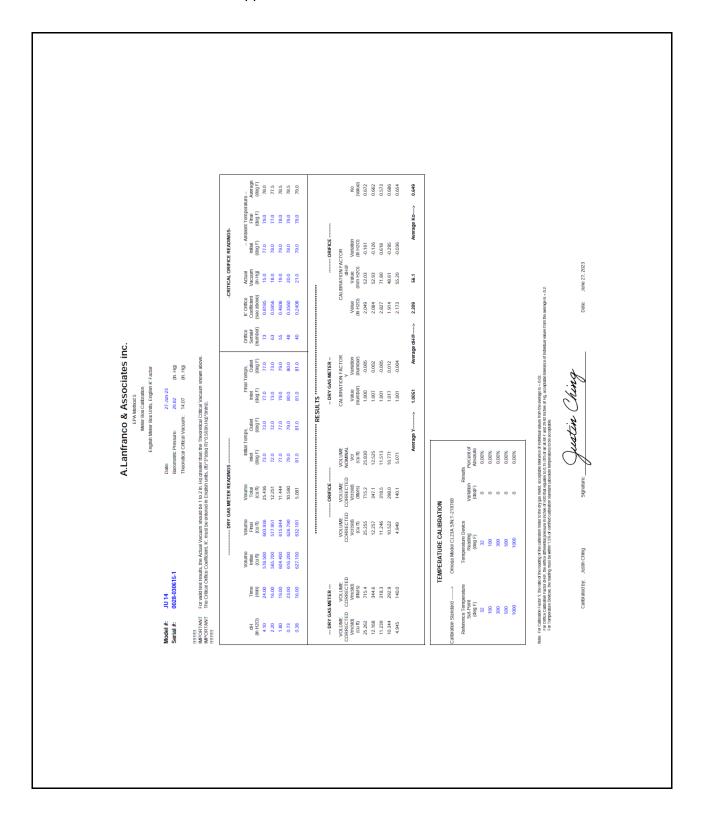
Pitot ID:	5A-3			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0110
0.125	0.180	23.6	0.8250	0.0118
0.200	0.280	29.9	0.8367	0.0001
0.360	0.500	40.1	0.8400	0.0032
0.540	0.760	49.1	0.8345	0.0023
		Average :	0.8368	0.0057

Pitot ID:	5A-2			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0046
0.090	0.125	20.1	0.8400	0.0031
0.280	0.370	35.4	0.8612	0.0181
0.360	0.500	40.1	0.8400	0.0031
0.530	0.760	48.7	0.8267	0.0164
9		Average:	0.8432	0.0091

Pitot ID:	5A-4			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0110
0.125	0.180	23.6	0.8250	0.0118
0.280	0.370	35.4	0.8612	0.0245
0.470	0.680	45.8	0.8231	0.0137
0.530	0.760	48.7	0.8267	0.0100
		Average :	0.8368	0.0142

Pitot ID:	ST 5A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.025	0.035	10.6	0.8367	0.0050
0.115	0.160	22.7	0.8393	0.0024
0.280	0.370	35.4	0.8612	0.0195
0.540	0.760	49.1	0.8345	0.0072
0.600	0.840	51.8	0.8367	0.0050
		Average:	0.8417	0.0078

Pitot ID:	5A-5			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.055	0.075	15.7	0.8478	0.0055
0.170	0.230	27.6	0.8511	0.0089
0.200	0.270	29.9	0.8521	0.0098
0.470	0.680	45.8	0.8231	0.0192
0.540	0.755	49.1	0.8373	0.0050
		Average:	0.8423	0.0097


Pitot ID:	ST 5B			
Reference Pitot (in H2O)	S-Type Pitot (in H2O)	Air Velocity (ft/s)	Pitot Coeff. Cp	Deviation (absolute)
0.055	0.075	15.7	0.8478	0.0012
0.125	0.180	23.6	0.8250	0.0216
	0.280	29.9	0.8367	0.0099
	0.500	40.1	0.8400	0.0066
	0.840	55.1	0.8907	0.0441
		Average		0.0167

Pitot ID: Reference Pitot	S-Type Pitot	Air Velocity	Pitot Coeff.	Deviation (absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average:		

* Average absolute deviation must not exceed 0.01.

Calibrated by: Jeremy Gibbs

June 27, 2023

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Christian De La O
Date: 26-Jun-23

Signature: Chris Del A O

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
ST01	0.1320	0.1315	0.1340	0.0025	0.1325	0.0000958
ST05	0.1750	0.1775	0.1775	0.0025	0.1767	0.0001702
SS-1	0.1775	0.1815	0.1785	0.0040	0.1792	0.0001751
SS-7	0.1805	0.1785	0.1775	0.0030	0.1788	0.0001744
SS-8	0.2090	0.2080	0.2100	0.0020	0.2090	0.0002382
ST10	0.2175	0.2170	0.2185	0.0015	0.2177	0.0002584
SS-18	0.2355	0.2350	0.2355	0.0005	0.2353	0.0003021
ST15	0.2430	0.2430	0.2415	0.0015	0.2425	0.0003207
SS-2	0.2470	0.2445	0.2465	0.0025	0.2460	0.0003301
SS-3	0.2485	0.2490	0.2490	0.0005	0.2488	0.0003377
SS-24	0.2500	0.2475	0.2475	0.0025	0.2483	0.0003364
В	0.2515	0.2525	0.2515	0.0010	0.2518	0.0003459
SS-14	0.2515	0.2485	0.2515	0.0030	0.2505	0.0003422
ST30	0.2510	0.2525	0.2525	0.0015	0.2520	0.0003464
ST20	0.2560	0.2575	0.2575	0.0015	0.2570	0.0003602
A	0.2585	0.2580	0.2575	0.0010	0.2580	0.0003631
SS-9	0.2730	0.2710	0.2730	0.0020	0.2723	0.0004045
ST40	0.2865	0.2865	0.2855	0.0010	0.2862	0.0004466
SS-30	0.2995	0.2980	0.3015	0.0035	0.2997	0.0004898
SS-13	0.3060	0.3070	0.3065	0.0010	0.3065	0.0005124
ST60	0.3060	0.3070	0.3050	0.0020	0.3060	0.0005107
ST50	0.3125	0.3090	0.3095	0.0035	0.3103	0.0005253
SS-10	0.3195	0.3155	0.3185	0.0040	0.3178	0.0005510
SS-327	0.3320	0.3300	0.3305	0.0020	0.3308	0.0005970
ST65	0.3385	0.3370	0.3385	0.0015	0.3380	0.0006231
ST66	0.3395	0.3375	0.3390	0.0020	0.3387	0.0006256
ST80	0.3670	0.3675	0.3670	0.0005	0.3672	0.0007353
ST75	0.3725	0.3725	0.3700	0.0025	0.3717	0.0007534
SS-5	0.3725	0.3735	0.3745	0.0020	0.3735	0.0007609
SS-16	0.3780	0.3765	0.3780	0.0015	0.3775	0.0007773
ST76	0.3750	0.3765	0.3780	0.0030	0.3765	0.0007731
ST85	0.4035	0.4020	0.4010	0.0025	0.4022	0.0008821
SS-15	0.4070	0.4070	0.4040	0.0030	0.4060	0.0008990
DD	0.4135	0.4145	0.4125	0.0020	0.4135	0.0009326
SS11	0.4225	0.4200	0.4225	0.0025	0.4217	0.0009698
ST70	0.4270	0.4260	0.4270	0.0010	0.4267	0.0009929
ST86	0.4565	0.4575	0.4545	0.0030	0.4562	0.0011349
C	0.4865	0.4890	0.4895	0.0030	0.4883	0.0013006
SS-491	0.4980	0.4960	0.4980	0.0020	0.4973	0.0013490
SS-49	0.5010	0.5010	0.5015	0.0005	0.5012	0.0013699
SS-6	0.4985	0.4985	0.4995	0.0010	0.4988	0.0013572
SS-492	0.4955	0.4955	0.4975	0.0020	0.4962	0.0013427
ST90	0.5050	0.5065	0.5045	0.0020	0.5053	0.0013928
ST92	0.5055	0.5040	0.5065	0.0025	0.5053	0.0013928
SS-558	0.5600	0.5600	0.5605	0.0005	0.5602	0.0017114
ST96	0.5605	0.5580	0.5615	0.0035	0.5600	0.0017104
SS-635	0.6435	0.6415	0.6430	0.0030	0.6427	0.0022527
SS-12	0.7460	0.7460	0.7470	0.0010	0.7463	0.0030380
12	0.7 400	3.1 400	3.7-7.0	0.0010	0.1700	0.0000000

Where:

D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in. (a)

Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in. (b)

(c) Average = average of D1, D2 and D3 $\,$

A. LANFRANCO and ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Date:

Daryl Sampson 8-Jul-23

Signature:

TEMPERATURE DEVICE CALIBRATIONS

Reference Device								Temp	erature Set	Temperature Settings (degrees F)	es F)					
Model CL23A Calibrator	rator	•	3	32	1	100	20	200	3(300	95	200	800	00	17	700
Device	ALA#	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
Omega HH11A	3	300132	32	%00.0	66	-0.18%	201	0.15%	301	0.13%	200	%00.0	800	%00:0	1699	-0.05%
Omega HH11A	4	200167	32	%00'0	66	-0.18%	200	%00'0	303	%68.0	499	-0.10%	199	%80'0-	1697	-0.14%
Omega HH11A	9	600029	33	0.20%	100	%00.0	201	0.15%	300	%00.0	499.2	-0.08%	798	-0.16%	1696	-0.19%
TPI 341K	7	2.0315E+10	31	-0.20%	9.66	-0.07%	199	-0.15%	301	0.13%	499.1	%60:0-	799.1	-0.07%	1695	-0.23%
TPI 341K	8	2.0313E+10	32	%00.0	99.7	-0.05%	200.4	%90'0	301	0.13%	498.5	-0.16%	799.2	%90:0-	1696	-0.19%
Cont Cmpny	10	102008464	31	-0.20%	99.2	-0.14%	199.5	%80:0-	588	-0.13%	499	-0.10%	799.1	%20.0-	1699	-0.05%
Omega HH11	14	409426	32.5	0.10%	99.1	-0.16%	199	-0.15%	298	-0.26%	501	0.10%	799.1	-0.07%	1698	%60:0-
TPI 341K	16	400120029	31	-0.20%	100	%00.0	199.2	-0.12%	299.3	%60:0-	501	0.10%	799.1	%20.0-	1700	%00.0
TPI 341K	18	2.0329E+10	31	-0.20%	8.66	-0.04%	199.2	-0.12%	299.8	-0.03%	200	%00.0	799.5	-0.04%	1701	0.05%
TPI 341K	20	2.0329E+10	31	-0.20%	99.2	-0.14%	199.1	-0.14%	299	-0.13%	499.2	%80:0-	799.2	%90:0-	1699	-0.05%
TPI 341K	22	2.0329E+10	32	%00.0	9.66	-0.07%	199.2	-0.12%	298.4	-0.21%	499.1	%60:0-	798.5	-0.12%	1698	%60:0-
Reference device is a NIST certified digital thermocouple calibrator	a NIST ce	rtified digital the	ermocouple	calibrator												
Variation expressed as a percentage of the absolu	as a norce	antage of the at		to temperature must be within 1.5 %	t he within	15%										

Calibration Certificate

Insrtument Calibrated: Serial #: Customer: Date: Calibrated by: Authorizing Signature:

Testo 2 (330-2LX) 03282252 ALA

A. Lanfranco and Associates Inc. certifies that the described instrument has been inspected and tested following calibration procedures in the Environment Canada Report EPS 1/PG/7 (Revised 2005). Below are the observed readings after calibrations are complete. Calibration checks should be completed at least every 6 months. Relative Humidity: 65% Barometric Pressure: 101.6 kPa Ambient Conditions:

		Initial Evaluation	o			After Calibration	tion		
	Instrument Reading (vol %)	Calibration Error Pass/Fail	Pass/Fail	Notes	Instrument Reading (vol %)	Calibration Error	Pass/Fail	Notes	Certified Value (vol %)
			í		(í		(
	0.1	0.10	Pass		0	0.00	Pass		0
	11.1	0.03	Pass		11.1	0.03	Pass		11.07
ent	21	0.04	Pass		21.0	0.04	Pass		20.96

Performance Specification: +/- 1% O₂ (absolute diff)

တ		Initial Evaluation	u.			After Calibration	tion		
	Instrument				Instrument Readin	B(Certified Value
Gas	Reading (ppm)	% Calibration Error Pass/Fail	Pass/Fail	Notes	(mdd)	% Calibration Error Pass/Fail	Pass/Fail	Notes	(mdd)
Zero	0	%0.0	Pass	O boodeo	0	%0:0	Pass		0
1 Gas	592	25.6%	Fail	Replaced CO	472	0.1%	Pass		472
2 Gas	2154	13.1%	Fail	ב	1900	0.2%	Pass		1904
3 Gas	245	2.3%	Pass		251	0.1%	Pass		251

Performance Specification: +/- 5% of Certified Gas Value

ON		Initial Evaluation	uc			After Calibration	tion		
	Instrument				Instrument Reading	_	į		Certified Value
Gas	Keading (ppm)	% Calibration Error Pass/Fall	Pass/Fall	Notes	(mdd)	% Calibration Error Pass/Fall	Pass/Fall	Notes	(mdd)
Zero	0	%0:0	Pass		0	0.0%	Pass		0
1 Gas	428	89.6	Fail	Re cal on 1	473	0.1%	Pass		473.4
2 Gas	235	8.9%	Fail	Gas	261	1.2%	Pass		258.0
3 Gas	45	3.6%	Pass		45	3.6%	Pass		43.4

Performance Specification: +/- 5% of Certified Gas Value

NIST Traceable Calibration Gases:

Cylinder	Cylinder ID Number	Certification Date	Expiration Date	Cylinder Pressure	NO	0;	00
				(PSI)	(ppm)	(Vol. %)	(ppm)
Zero Gas (N ₂)	T97227026	10-Nov-2022	9-Nov-2027	2270	0	0	0
1 Gas	SG9107852B	6-May-2021	5-May-2024	950	473.4	0	471.5
2 Gas	CC320634	23-Mar-2018	23-Mar-2026	520	258	0	1904
3 Gas	CC22286	18-Nov-2022	19-Nov-2026	1030	43.42	0	250.7
O ₂ /CO ₂	CC256047	11-Nov-2022	12-Nov-2030	1320	0	11.07	0
Note: National Institut	e of Standards and T	institute of Standards and Technology traceable certificates are available upon request	certificates are av	ailable upon re	quest.		

Ministry of Environment and Climate Change Strategy

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who

undertake work in relation to ministry legislation, ro knowledge, experience and objectivity necessary to	egulations and codes of practice have the of fulfill this role.
1. Name of Qualified Professional Tever	y Gibles
Title <u>CTV 1707</u>	THENTAL TECHNICISKI
2. Are you a registered member of a professional a	association in B.C.?
Name of Association:	Registration#
3. Brief description of professional services: ENVIRONMENTAL CONSULTANT OLIMOSPHELIC SCIENCES	Specialize in air and
This declaration of competency is collected under so Protection of Privacy Act for the purposes of increas professional ethics and accountability. By signing an publication and its disclosure outside of Canada. Thi cannot be revoked. If you have any questions about personal information please contact the Ministry of deadquarters Office at 1-800-663-7867.	ing government transparency and ensuring d submitting this statement you consent to its s consent is valid from the date submitted and the collection, use or disclosure of your
<u>Declara</u>	tion
am a qualified professional with the knowledge, skinformation, advice and/or recommendations in rela	ills and experience to provide expert ation to the specific work described above.
ignature:	Witnessed by:
rint Name: Deremy 6,555	Print Name: Conno Laan
late signed: Nav 1, 2020	
Qualified Professional, in relation to a duty or function under minis	the logiclation manner in divided to be
	association, is acting under that organization's code of ethics
	ni, unu

b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

July 2019

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who

knowledge, experience and objectivity	/ legislation, regulations and codes of practice have the y necessary to fulfill this role.
Name of Qualified Professional	Mark Lanfranco
Title	President Owner
2. Are you a registered member of a	professional association in B.C.? ☐ Yes 🗵 No
Name of Association:	Registration #
Brief description of professional ser Environmental consulting, special	rvices: alizing in air and atmospheric sciences
Protection of Privacy Act for the purpo professional ethics and accountability. publication and its disclosure outside of cannot be revoked. If you have any qu	ected under section 26(c) of the <i>Freedom of Information and</i> uses of increasing government transparency and ensuring. By signing and submitting this statement you consent to its of Canada. This consent is valid from the date submitted and uestions about the collection, use or disclosure of your ne Ministry of Environment and Climate Change Strategy 7.
	<u>Declaration</u>
	knowledge, skills and experience to provide expert dations in relation to the specific work described above.
Signature:	Witnessed by:
Print Name: Mark Lanfranco	Print Name: Melissa WAHKing
Date signed: Nov.16, 2020	
¹ Qualified Professional, in relation to a duty or fu	nction under ministry legislation, means an individual who
	th a professional association, is acting under that organization's code of ethics,
b) through suitable education, experie	ence, accreditation and knowledge, may reasonably be relied on to provide erlise, which area of expertise is applicable to the duty or function.
July 2019	

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 201

May 22, 2019

Date

 $\mathcal{PM}_{\mathsf{Dean}}$ Dean Faculty of Continuing Education and Extension

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;

111

- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

declare declare	ember of Air and Waste Management Association
Select one of the following:	
☑ Absence from conflict of interest	
Other than the standard fee I will receive for my p	rofessional services, I have no financial or
other interest in the outcome of this project	. I further declare that should a
conflict of interest arise in the future during the co	ourse of this work, I will fully disclose the
circumstances in writing and without delay to Mr. Sajid Barlas	, erring on the side of caution.

1 of 2

Signature,

Print name/

Date: Dec.16, 2020

Ministry of Environment and

١	☐ Real or perceived conflict of interest
	Description and nature of conflict(s):
	I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.
	In addition, I will take the following steps to mitigate the real or perceived conflict(s) I
	have disclosed, to ensure the public interest remains paramount:
	Further, I acknowledge that this disclosure may be interpreted as a threat to my
	independence and will be considered by the statutory decision maker accordingly.
	conflict of interest disclosure statement is collected under section 26(c) of the Freedom of rmation and Protection of Privacy Act for the purposes of increasing government
	sparency and ensuring professional ethics and accountability. By signing and submitting this
	and the second of the little o
stat	ement you consent to its publication and its disclosure outside of Canada. This consent is
stat vali	ement you consent to its publication and its disclosure outside of Canada. This consent is d from the date submitted and cannot be revoked. If you have any questions about the ection, use or disclosure of your personal information please contact the Ministry of

Witnessed by:

Print name:_

Mark Lanfranco

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide

advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

2023 Annual Report for Authorization 8808 - Atlantic Power - Williams Lake Power Plant
Appendix B - Ash Analysis Report

Your P.O. #: CC

Site Location: Williams Lake Power Plant

Your C.O.C. #: 70632

Attention: Jacob Stevl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2023/10/13 Report #: R3410255 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C368751 Received: 2023/09/01. 09:40

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Metals - TCLP	1	2023/09/08	2023/09/08	BBY7SOP-00001	EPA 1311, 6020bR2 m
Moisture	1	2023/09/03	2023/09/05	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Non Routine/Non Validated Matrix Tested (2)	1	N/A	2023/09/01		
PAH in Soil by GC/MS (SIM)	1	2023/09/07	2023/09/07	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH TEQ Calculation, BC Reg. 132/92 (3)	1	N/A	2023/09/07	BBY WI-00033	Auto Calc
Total PAH and B(a)P Calculation (4)	1	N/A	2023/09/07	BBY WI-00033	Auto Calc
TCLP pH Measurements	1	N/A	2023/09/08	BBY7SOP-00005	EPA 1311
Dioxins/Furans in Soil (1613B) (1, 5)	1	2023/09/22	2023/10/04	BRL SOP-00410	EPA 1613B m
2378TCDF Confirmation (M8290A/M1613) (1)	1	2023/09/22	2023/10/12	BRL SOP-00406	EPA M8290Am/ M1613Bm
				BRL SOP-00410	

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Campobello, 6740 Campobello Road , Mississauga, ON, L5N 2L8
- (2) Sample(s) analyzed using methodologies that have not been subjected to Bureau Veritas' standard validation process for the submitted matrix and is not an accredited method.

Page 1 of 19

Your P.O. #: CC

Site Location: Williams Lake Power Plant

Your C.O.C. #: 70632

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2023/10/13 Report #: R3410255 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C368751

Received: 2023/09/01, 09:40

Analysis performed with client consent, however results should be viewed with discretion.

(3) PAH TEQ = 0.1*benzo(a)anthracene + 1.0*benzo(a)pyrene + 0.1*benzo(b)fluoranthene + 0.1*benzo(k)fluoranthene + 1.1*dibenzo(a,h)anthracene + 0.2*indeno(1,2,3-cd)pyrene (4) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Acridine, Indeno(1,2,3-cd)pyrene, Indeno(1,2,3-cd

Total PAHs in Sediment include (B.C. Reg. 116/2018, Schedule 3.4): Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(5) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

Encryption Key

Amita Sharma Customer Solutions Representative 11 Dec 2023 16:26:51

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com

Phone# (604) 734 7276

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 19

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		BYB655	
Sampling Date		2023/08/30	
Sampling Date		15:30	
COC Number		70632	
	UNITS	Glass Jars (Amber) filled with Ash	QC Batch
MISCELLANEOUS	UNITS	, ,	QC Batch

 $Page \ 3 \ of \ 19$ Bureau Veritas Burnaby: 4606 Canada Way VSG 1KS Telephone(604) 734-7276 Fax(604) 731-2386

PHYSICAL TESTING (SOIL)

Bureau Veritas ID		BYB655						
Sampling Date		2023/08/30 15:30						
COC Number		70632						
	UNITS	Glass Jars (Amber) filled with Ash	RDL	QC Batch				
Physical Properties								
Moisture	%	<0.30	0.30	B094157				
RDL = Reportable Detection Limit								

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		BYB655						
Camadina Data		2023/08/30						
Sampling Date		15:30						
COC Number		70632						
	UNITS	Glass Jars (Amber) filled with Ash	RDL	QC Batch				
Calculated Parameters								
PAH Toxicity Equivalency	mg/kg	0.026	0.020	B093537				
RDL = Reportable Detection Limit								

 $Page 5\ of\ 19$ Bureau Veritas Burnaby: 4606 Canada Way VSG 1KS Telephone(604) 734-7276 Fax(604) 731-2386

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID		BYB655	
Sampling Date		2023/08/30	
Jamping Date		15:30	
COC Number		70632	
	UNITS	Glass Jars (Amber) filled with Ash	QC Batch
TCLP Extraction Procedure			
Initial pH of Sample	рН	12.6	B098934
pH after HCl	рН	12.3	B098934
Final pH of Leachate	рН	11.8	B098934
pH of Leaching Fluid	рН	2.93	B098934

Bureau Veritas Job #: C368751 Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: Williams Lake Power Plant
Your P.O. #: CC

DIOXIN AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		BYB655						
Sampling Date		2023/08/30						
Sampling Date		15:30						
COC Number		70632			TOXIC EQU	IVALENCY	# of	
	UNITS	Glass Jars (Amber) filled with Ash	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
DIOXINS								
2,3,7,8-Tetra CDD *	pg/g	70.9	0.111	0.999	1.00	70.9	1	B153102
1,2,3,7,8-Penta CDD *	pg/g	137	0.106	5.00	1.00	137	1	B153102
1,2,3,4,7,8-Hexa CDD *	pg/g	43.8	0.118	5.00	0.100	4.38	1	B153102
1,2,3,6,7,8-Hexa CDD *	pg/g	44.7	0.104	5.00	0.100	4.47	1	B153102
1,2,3,7,8,9-Hexa CDD *	pg/g	77.6	0.106	5.00	0.100	7.76	1	B153102
1,2,3,4,6,7,8-Hepta CDD *	pg/g	147	0.104	5.00	0.0100	1.47	1	B153102
Octa CDD *	pg/g	161	0.109	9.99	0.000300	0.0483	1	B153102
Total Tetra CDD *	pg/g	1670	0.111	0.999			14	B153102
Total Penta CDD *	pg/g	1430	0.106	5.00			12	B153102
Total Hexa CDD *	pg/g	687	0.109	5.00			7	B153102
Total Hepta CDD *	pg/g	280	0.104	5.00			2	B153102
2,3,7,8-Tetra CDF **	pg/g	<901 (1)	901	0.999	0.100	90.1	1	B153102
1,2,3,7,8-Penta CDF **	pg/g	200	0.102	5.00	0.0300	6.00	1	B153102
2,3,4,7,8-Penta CDF **	pg/g	306	0.120	5.00	0.300	91.8	1	B153102
1,2,3,4,7,8-Hexa CDF **	pg/g	148	0.0987	5.00	0.100	14.8	1	B153102
1,2,3,6,7,8-Hexa CDF **	pg/g	93.3	0.0955	5.00	0.100	9.33	1	B153102
2,3,4,6,7,8-Hexa CDF **	pg/g	88.7	0.0936	5.00	0.100	8.87	1	B153102
1,2,3,7,8,9-Hexa CDF **	pg/g	20.0	0.211	5.00	0.100	2.00	1	B153102
1,2,3,4,6,7,8-Hepta CDF **	pg/g	103	0.0948	5.00	0.0100	1.03	1	B153102
1,2,3,4,7,8,9-Hepta CDF **	pg/g	16.5	0.126	5.00	0.0100	0.165	1	B153102
Octa CDF **	pg/g	23.7	0.122	9.99	0.000300	0.00711	1	B153102
Total Tetra CDF **	pg/g	5800	0.112	0.999			17	B153102
Total Penta CDF **	pg/g	3080	0.109	5.00			15	B153102

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

(1) RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

Page 7 of 19

Bureau Veritas Job #: C368751 Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: Williams Lake Power Plant
Your P.O. #: CC

DIOXIN AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		BYB655						
Sampling Date		2023/08/30 15:30						
COC Number		70632			TOXIC EQU	IIVALENCY	# of	
	UNITS	Glass Jars (Amber) filled with Ash	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Hexa CDF **	pg/g	858	0.112	5.00			12	B153102
Total Hepta CDF **	pg/g	170	0.108	5.00			4	B153102
TCDF Confirmation								
Confirmation 2,3,7,8-Tetra CDF **	pg/g	415 (1)	0.14	5.0	0.100	41.5		B153103
TOTAL TOXIC EQUIVALENCY	pg/g					402		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	107						B153102
C13-1234678 HeptaCDD *	%	46						B153102
C13-1234678 HeptaCDF **	%	42						B153102
C13-123478 HexaCDD *	%	98						B153102
C13-123478 HexaCDF **	%	87						B153102
C13-1234789 HeptaCDF **	%	40						B153102
C13-123678 HexaCDD *	%	106						B153102
C13-123678 HexaCDF **	%	86						B153102
C13-12378 PentaCDD *	%	88						B153102
C13-12378 PentaCDF **	%	84						B153102
C13-123789 HexaCDF **	%	46						B153102
C13-234678 HexaCDF **	%	91						B153102
C13-23478 PentaCDF **	%	66						B153102
C13-2378 TetraCDD *	%	82						B153102
C13-2378 TetraCDF **	%	76						B153102
C13-OCDD *	%	16 (2)						B153102
Confirmation C13-2378 TetraCDF **	%	78						B153103

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

(1) 5X Dilution

(2) Recovery outside method acceptance criteria due to matrix effects

Page 8 of 19

BUREAU VERITAS Bureau Veritas Job #: C368751 Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD. Site Location: Williams Lake Power Plant Your P.O. #: CC

TCLP METALS (SOIL)

Bureau Veritas ID		BYB655		
Sampling Date		2023/08/30		
Jamping Date		15:30		
COC Number		70632		
	UNITS	Glass Jars (Amber) filled with Ash	RDL	QC Batch
TCLP Extraction Procedure				
Leachate Antimony (Sb)	mg/L	<0.10	0.10	B100307
Leachate Arsenic (As)	mg/L	<0.10	0.10	B100307
Leachate Barium (Ba)	mg/L	1.95	0.10	B100307
Leachate Beryllium (Be)	mg/L	<0.10	0.10	B100307
Leachate Boron (B)	mg/L	0.20	0.10	B100307
Leachate Cadmium (Cd)	mg/L	<0.10	0.10	B100307
Leachate Chromium (Cr)	mg/L	0.15	0.10	B100307
Leachate Cobalt (Co)	mg/L	<0.10	0.10	B100307
Leachate Copper (Cu)	mg/L	<0.10	0.10	B100307
Leachate Iron (Fe)	mg/L	<0.50	0.50	B100307
Leachate Lead (Pb)	mg/L	<0.10	0.10	B100307
Leachate Mercury (Hg)	mg/L	<0.0020	0.0020	B100307
Leachate Molybdenum (Mo)	mg/L	0.28	0.10	B100307
Leachate Nickel (Ni)	mg/L	<0.10	0.10	B100307
Leachate Selenium (Se)	mg/L	<0.10	0.10	B100307
Leachate Silver (Ag)	mg/L	<0.010	0.010	B100307
Leachate Thallium (TI)	mg/L	<0.10	0.10	B100307
Leachate Uranium (U)	mg/L	<0.10	0.10	B100307
Leachate Vanadium (V)	mg/L	<0.10	0.10	B100307
Leachate Zinc (Zn)	mg/L	<0.10	0.10	B100307
Leachate Zirconium (Zr)	mg/L	<0.10	0.10	B100307
RDL = Reportable Detection Li	mit			

Page 9 of 19

CSR PAH IN SOIL BY GC-MS (SOIL)

Bureau Veritas ID		BYB655		
Camarilla a Data		2023/08/30		
Sampling Date		15:30		
COC Number		70632		
	UNITS	Glass Jars (Amber) filled with Ash	RDL	QC Batch
Calculated Parameters				
Low Molecular Weight PAH's	mg/kg	<0.020	0.020	B092441
High Molecular Weight PAH`s	mg/kg	<0.050	0.050	B092441
Total PAH	mg/kg	<0.050	0.050	B092441
B[a]P TPE Total Potency Equivalents	mg/kg	0.024	0.010	B092441
Polycyclic Aromatics				
Naphthalene	mg/kg	<0.010	0.010	B098090
2-Methylnaphthalene	mg/kg	<0.020	0.020	B098090
Acenaphthylene	mg/kg	<0.0050	0.0050	B098090
Acenaphthene	mg/kg	<0.0050	0.0050	B098090
Fluorene	mg/kg	<0.020	0.020	B098090
Phenanthrene	mg/kg	<0.010	0.010	B098090
Anthracene	mg/kg	<0.0040	0.0040	B098090
Fluoranthene	mg/kg	<0.020	0.020	B098090
Pyrene	mg/kg	<0.020	0.020	B098090
Benzo(a)anthracene	mg/kg	<0.020	0.020	B098090
Chrysene	mg/kg	<0.020	0.020	B098090
Benzo(b&j)fluoranthene	mg/kg	<0.020	0.020	B098090
Benzo(b)fluoranthene	mg/kg	<0.020	0.020	B098090
Benzo(k)fluoranthene	mg/kg	<0.020	0.020	B098090
Benzo(a)pyrene	mg/kg	<0.020	0.020	B098090
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	0.020	B098090
Dibenz(a,h)anthracene	mg/kg	<0.020	0.020	B098090
Benzo(g,h,i)perylene	mg/kg	<0.050	0.050	B098090
Surrogate Recovery (%)			•	
D10-ANTHRACENE (sur.)	%	50		B098090
RDL = Reportable Detection Limit			•	

Page 10 of 19

NTS
504) 734-7276 Fax(604) 731-2386

BUREAU VERITAS Bureau Veritas Job #: C368751 Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: Williams Lake Power Plant

Your P.O. #: CC

QUALITY ASSURANCE REPORT

QA/QC	Lucia	007	D	Data Analysis	Malara	D	LIMITC	001::
Batch	Init	QC Type	Parameter	Date Analyzed 2023/09/05	Value <0.30	Recovery	UNITS	QC Limits
B094157 B094157	IP1 IP1	Method Blank RPD	Moisture Moisture	2023/09/05	0.50		% %	20
B094137 B098090	MDW	Matrix Spike	D10-ANTHRACENE (sur.)	2023/09/07	0.30	82	%	50 - 1 40
DUSOUSU	IVIDVV	імастіх эріке	Naphthalene	2023/09/07		79	%	50 - 140 50 - 140
			2-Methylnaphthalene	2023/09/07		80	%	50 - 140
			Acenaphthylene	2023/09/07		79	%	50 - 140
			Acenaphthene	2023/09/07		81	%	50 - 140
			Fluorene	2023/09/07		82	%	50 - 140
			Phenanthrene	2023/09/07		80	%	50 - 140 50 - 140
			Anthracene	2023/09/07		81	%	50 - 140
			Fluoranthene	2023/09/07		82	%	50 - 140
			Pyrene	2023/09/07		78	%	50 - 140
			Benzo(a)anthracene	2023/09/07		78 77	%	50 - 140
			Chrysene	2023/09/07		80	%	50 - 140
			Benzo(b&j)fluoranthene	2023/09/07		75	%	50 - 140
			Benzo(b)fluoranthene	2023/09/07		73	%	50 - 140
			Benzo(k)fluoranthene	2023/09/07		73 78	%	50 - 140
			Benzo(a)pyrene	2023/09/07		78	%	50 - 140
			Indeno(1,2,3-cd)pyrene	2023/09/07		80	%	50 - 140
			Dibenz(a,h)anthracene	2023/09/07		74	%	50 - 140
			Benzo(g,h,i)perylene	2023/09/07		77	%	50 - 140
B098090	MDW	Spiked Blank	D10-ANTHRACENE (sur.)	2023/09/07		83	%	50 - 140
B030030	141044	эрікей Бійтік	Naphthalene	2023/09/07		75	%	50 - 140
			2-Methylnaphthalene	2023/09/07		78	%	50 - 140
		Acenaphthylene	2023/09/07		77	%	50 - 140	
		Acenaphthene	2023/09/07		79	%	50 - 140	
			Fluorene	2023/09/07		80	%	50 - 140
			Phenanthrene	2023/09/07		82	%	50 - 140
			Anthracene	2023/09/07		81	%	50 - 140
			Fluoranthene	2023/09/07		83	%	50 - 140
			Pyrene	2023/09/07		79	%	50 - 140
			Benzo(a)anthracene	2023/09/07		80	%	50 - 140
			Chrysene	2023/09/07		83	%	50 - 140
			Benzo(b&j)fluoranthene	2023/09/07		76	%	50 - 140
			Benzo(b)fluoranthene	2023/09/07		75	%	50 - 140
			Benzo(k)fluoranthene	2023/09/07		83	%	50 - 140
			Benzo(a)pyrene	2023/09/07		82	%	50 - 140
			Indeno(1,2,3-cd)pyrene	2023/09/07		82	%	50 - 140
			Dibenz(a,h)anthracene	2023/09/07		78	%	50 - 140
			Benzo(g,h,i)perylene	2023/09/07		80	%	50 - 140
B098090	MDW	Method Blank	D10-ANTHRACENE (sur.)	2023/09/07		87	%	50 - 140
			Naphthalene	2023/09/07	< 0.010		mg/kg	
			2-Methylnaphthalene	2023/09/07	< 0.020		mg/kg	
			Acenaphthylene	2023/09/07	< 0.0050		mg/kg	
			Acenaphthene	2023/09/07	< 0.0050		mg/kg	
			Fluorene	2023/09/07	< 0.020		mg/kg	
			Phenanthrene	2023/09/07	<0.010		mg/kg	
			Anthracene	2023/09/07	< 0.0040		mg/kg	
			Fluoranthene	2023/09/07	<0.020		mg/kg	
			Pyrene	2023/09/07	< 0.020		mg/kg	
			Benzo(a)anthracene	2023/09/07	<0.020		mg/kg	
			Chrysene	2023/09/07	<0.020		mg/kg	
			Benzo(b&j)fluoranthene	2023/09/07	<0.020		mg/kg	
			Benzo(b)fluoranthene	2023/09/07	<0.020		mg/kg	

Page 12 of 19

VERITAS
Bureau Veritas Job #: C368751
Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: Williams Lake Power Plant

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		- //	Benzo(k)fluoranthene	2023/09/07	<0.020	,	mg/kg	-
			Benzo(a)pyrene	2023/09/07	< 0.020		mg/kg	
			Indeno(1,2,3-cd)pyrene	2023/09/07	< 0.020		mg/kg	
			Dibenz(a,h)anthracene	2023/09/07	< 0.020		mg/kg	
			Benzo(g,h,i)perylene	2023/09/07	< 0.050		mg/kg	
B098090	MDW	RPD	Naphthalene	2023/09/07	NC		%	50
			2-Methylnaphthalene	2023/09/07	NC		%	50
			Acenaphthylene	2023/09/07	NC		%	50
			Acenaphthene	2023/09/07	NC		%	50
			Fluorene	2023/09/07	NC		%	50
			Phenanthrene	2023/09/07	NC		%	50
			Anthracene	2023/09/07	NC		%	50
			Fluoranthene	2023/09/07	NC		%	50
			Pyrene	2023/09/07	NC		%	50
			'				%	50
			Benzo(a)anthracene	2023/09/07	NC			
			Chrysene	2023/09/07	NC		%	50
			Benzo(b&j)fluoranthene	2023/09/07	NC		%	50
			Benzo(b)fluoranthene	2023/09/07	NC		%	50
			Benzo(k)fluoranthene	2023/09/07	NC		%	50
			Benzo(a)pyrene	2023/09/07	NC		%	50
			Indeno(1,2,3-cd)pyrene	2023/09/07	NC		%	50
			Dibenz(a,h)anthracene	2023/09/07	NC		%	50
			Benzo(g,h,i)perylene	2023/09/07	NC		%	50
B098934	S2L	Method Blank	Initial pH of Sample	2023/09/08	4.90		рН	
			pH after HCl	2023/09/08	NA		рН	
			Final pH of Leachate	2023/09/08	4.93		рН	
			pH of Leaching Fluid	2023/09/08	4.90		рН	
B098934	S2L	RPD	Initial pH of Sample	2023/09/08	0.33		%	N/A
			pH after HCl	2023/09/08	6.5		%	N/A
			Final pH of Leachate	2023/09/08	0		%	N/A
			pH of Leaching Fluid	2023/09/08	0		%	N/A
B100307	USH	Matrix Spike [BYB655-03]	Leachate Antimony (Sb)	2023/09/08		101	%	75 - 125
			Leachate Arsenic (As)	2023/09/08		106	%	75 - 125
			Leachate Barium (Ba)	2023/09/08		106	%	75 - 125
			Leachate Beryllium (Be)	2023/09/08		98	%	75 - 125
			Leachate Boron (B)	2023/09/08		97	%	75 - 125
			Leachate Cadmium (Cd)	2023/09/08		105	%	75 - 125
			Leachate Chromium (Cr)	2023/09/08		103	%	75 - 125
			Leachate Cobalt (Co)	2023/09/08		103	%	75 - 125
			Leachate Copper (Cu)	2023/09/08		96	%	75 - 125
			Leachate Iron (Fe)	2023/09/08		102	%	75 - 125
			Leachate Lead (Pb)	2023/09/08		105	%	75 - 125
			Leachate Mercury (Hg)	2023/09/08		103	%	75 - 125
			Leachate Molybdenum (Mo)	2023/09/08		109	%	75 - 125
			Leachate Nickel (Ni)	2023/09/08		97	%	75 - 125
			Leachate Selenium (Se)	2023/09/08		106	%	75 - 125
			Leachate Silver (Ag)	2023/09/08		93	%	75 - 125
			Leachate Thallium (TI)	2023/09/08		98	%	75 - 125
			Leachate Uranium (U)	2023/09/08		107	%	75 - 12 5
			Leachate Vanadium (V)	2023/09/08		102	%	75 - 125
			Leachate Zinc (Zn)	2023/09/08		98	%	75 - 125 75 - 125
			• •				%	75 - 125 75 - 125
0100207	нен	Called Black	Leachate Zirconium (Zr)	2023/09/08		106		
B100307	USH	Spiked Blank	Leachate Antimony (Sb)	2023/09/08		99	%	75 - 125
			Leachate Arsenic (As)	2023/09/08		101	%	75 - 125

Page 13 of 19

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachate Barium (Ba)	2023/09/08		99	%	75 - 125
			Leachate Beryllium (Be)	2023/09/08		94	%	75 - 125
			Leachate Boron (B)	2023/09/08		95	%	75 - 125
			Leachate Cadmium (Cd)	2023/09/08		101	%	75 - 125
			Leachate Chromium (Cr)	2023/09/08		96	%	75 - 125
			Leachate Cobalt (Co)	2023/09/08		97	%	75 - 125
			Leachate Copper (Cu)	2023/09/08		92	%	75 - 125
			Leachate Iron (Fe)	2023/09/08		98	%	75 - 125
			Leachate Lead (Pb)	2023/09/08		100	%	75 - 12 5
			Leachate Mercury (Hg)	2023/09/08		98	%	75 - 12 5
			Leachate Molybdenum (Mo)	2023/09/08		96	%	75 - 12 5
			Leachate Nickel (Ni)	2023/09/08		91	%	75 - 12 5
			Leachate Selenium (Se)	2023/09/08		100	%	75 - 125
			Leachate Silver (Ag)	2023/09/08		90	%	75 - 125 75 - 125
			Leachate Thallium (TI)	2023/09/08		91	% %	75 - 125 75 - 125
			Leachate Uranium (U)	2023/09/08		99	%	75 - 125 75 - 125
			, ,					75 - 125 75 - 125
			Leachate Vanadium (V)	2023/09/08		95 97	% %	75 - 125 75 - 125
			Leachate Zinc (Zn)	2023/09/08		101	%	75 - 125 75 - 125
B100307	нен	Markland Dland	Leachate Zirconium (Zr)	2023/09/08	-0.10	101		/5 - 125
B100307	USH	Method Blank	Leachate Antimony (Sb)	2023/09/08	<0.10		mg/L	
			Leachate Arsenic (As)	2023/09/08	<0.10		mg/L	
			Leachate Barium (Ba)	2023/09/08	<0.10		mg/L	
			Leachate Beryllium (Be)	2023/09/08	<0.10		mg/L	
			Leachate Boron (B)	2023/09/08	<0.10		mg/L	
			Leachate Cadmium (Cd)	2023/09/08	<0.10		mg/L	
			Leachate Chromium (Cr)	2023/09/08	<0.10		mg/L	
			Leachate Cobalt (Co)	2023/09/08	<0.10		mg/L	
			Leachate Copper (Cu)	2023/09/08	<0.10		mg/L	
			Leachate Iron (Fe)	2023/09/08	<0.50		mg/L	
			Leachate Lead (Pb)	2023/09/08	<0.10		mg/L	
			Leachate Mercury (Hg)	2023/09/08	<0.0020		mg/L	
			Leachate Molybdenum (Mo)	2023/09/08	<0.10		mg/L	
			Leachate Nickel (Ni)	2023/09/08	<0.10		mg/L	
			Leachate Selenium (Se)	2023/09/08	<0.10		mg/L	
			Leachate Silver (Ag)	2023/09/08	< 0.010		mg/L	
			Leachate Thallium (TI)	2023/09/08	<0.10		mg/L	
			Leachate Uranium (U)	2023/09/08	< 0.10		mg/L	
			Leachate Vanadium (V)	2023/09/08	< 0.10		mg/L	
			Leachate Zinc (Zn)	2023/09/08	< 0.10		mg/L	
			Leachate Zirconium (Zr)	2023/09/08	< 0.10		mg/L	
B153102	éGP	Matrix Spike [BYB655-02]	37CL4 2378 Tetra CDD	2023/10/04		109	%	35 - 197
			C13-1234678 HeptaCDD	2023/10/04		48	%	23 - 140
			C13-1234678 HeptaCDF	2023/10/04		43	%	28 - 143
			C13-123478 HexaCDD	2023/10/04		105	%	32 - 141
			C13-123478 HexaCDF	2023/10/04		89	%	26 - 152
			C13-1234789 HeptaCDF	2023/10/04		35	%	26 - 138
			C13-123678 HexaCDD	2023/10/04		102	%	28 - 130
			C13-123678 HexaCDF	2023/10/04		86	%	26 - 123
			C13-12378 PentaCDD	2023/10/04		94	%	25 - 181
			C13-12378 PentaCDF	2023/10/04		86	%	24 - 185
			C13-123789 HexaCDF	2023/10/04		46	%	29 - 147
			C13-234678 HexaCDF	2023/10/04		91	%	28 - 136
			C13-23478 PentaCDF	2023/10/04		63	%	21 - 178
			C13-23478 TetraCDD	2023/10/04		84	%	25 - 164

Page 14 of 19

BUREAU VERITAS Bureau Veritas Job #: C368751 Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: Williams Lake Power Plant

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed Va	lue Recovery	UNITS	QC Limits
			C13-2378 TetraCDF	2023/10/04	80	%	24 - 169
			C13-OCDD	2023/10/04	10 (1)	%	17 - 157
			2,3,7,8-Tetra CDD	2023/10/04	26 (1)	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/10/04	116	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/10/04	102	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/10/04	106	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/10/04	85	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/10/04	107	%	70 - 140
			Octa CDD	2023/10/04	140	%	78 - 144
			2,3,7,8-Tetra CDF	2023/10/04	103	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/10/04	123	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/10/04	126	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/10/04	97	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/10/04	102	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/10/04	95	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/10/04	130	%	78 - 13 0
			1,2,3,4,6,7,8-Hepta CDF	2023/10/04	104	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/10/04	103	%	78 - 138
			Octa CDF	2023/10/04	144	%	63 - 170
B153102	éGP	Spiked Blank	37CL4 2378 Tetra CDD	2023/10/04	110	%	35 - 197
B133102	eGr	эрікей Біапк	C13-1234678 HeptaCDD	2023/10/01	91	%	23 - 140
			C13-1234678 HeptaCDF	2023/10/01	81	% %	28 - 143
			C13-123478 HexaCDD	2023/10/01	109 96	%	32 - 141
			C13-123478 HexaCDF	2023/10/01			26 - 152
			C13-1234789 HeptaCDF	2023/10/01	88	%	26 - 138
			C13-123678 HexaCDD	2023/10/01	103	%	28 - 130
			C13-123678 HexaCDF	2023/10/01	90	%	26 - 123
			C13-12378 PentaCDD	2023/10/01	101	%	25 - 181
			C13-12378 PentaCDF	2023/10/01	98	%	24 - 185
			C13-123789 HexaCDF	2023/10/01	92	%	29 - 147
			C13-234678 HexaCDF	2023/10/01	104	%	28 - 136
			C13-23478 PentaCDF	2023/10/01	76	%	21 - 178
			C13-2378 TetraCDD	2023/10/01	90	%	25 - 164
			C13-2378 TetraCDF	2023/10/01	92	%	24 - 169
			C13-OCDD	2023/10/01	93	%	17 - 157
			2,3,7,8-Tetra CDD	2023/10/01	103	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/10/01	108	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/10/01	101	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/10/01	104	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/10/01	107	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/10/01	99	%	70 - 140
			Octa CDD	2023/10/01	104	%	78 - 144
			2,3,7,8-Tetra CDF	2023/10/01	94	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/10/01	98	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/10/01	102	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/10/01	97	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/10/01	100	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/10/01	90	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/10/01	102	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/10/01	105	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/10/01	105	%	78 - 138
			Octa CDF	2023/10/01	140	%	63 - 170
B153102	éGP	Method Blank	37CL4 2378 Tetra CDD	2023/09/27	82	%	35 - 197
133102	231	caroa siank	C13-1234678 HeptaCDD	2023/09/27	81	%	23 - 140

Page 15 of 19

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch Init (QC Туре	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
		C13-1234678 HeptaCDF	2023/09/27		89	%	28 - 143
		C13-123478 HexaCDD	2023/09/27		85	%	32 - 141
		C13-123478 HexaCDF	2023/09/27		86	%	26 - 152
		C13-1234789 HeptaCDF	2023/09/27		97	%	26 - 138
		C13-123678 HexaCDD	2023/09/27		81	%	28 - 130
		C13-123678 HexaCDF	2023/09/27		83	%	26 - 123
		C13-12378 PentaCDD	2023/09/27		71	%	25 - 183
		C13-12378 PentaCDF	2023/09/27		64	%	24 - 185
		C13-123789 HexaCDF	2023/09/27		87	%	29 - 14
		C13-234678 HexaCDF	2023/09/27		95	%	28 - 13
		C13-23478 PentaCDF	2023/09/27		41	%	21 - 17
		C13-2378 TetraCDD	2023/09/27		63	%	25 - 16
		C13-2378 TetraCDF	2023/09/27		78	%	24 - 16
		C13-OCDD	2023/09/27		65	%	17 - 15
		2,3,7,8-Tetra CDD	2023/09/27	<0.137, EDL=0.137		pg/g	
		1,2,3,7,8-Penta CDD	2023/09/27	<0.146, EDL=0.146		pg/g	
		1,2,3,4,7,8-Hexa CDD	2023/09/27	<0.140, EDL=0.140		pg/g	
		1,2,3,6,7,8-Hexa CDD	2023/09/27	<0.139, EDL=0.139		pg/g	
		1,2,3,7,8,9-Hexa CDD	2023/09/27	<0.134, EDL=0.134		pg/g	
		1,2,3,4,6,7,8-Hepta CDD	2023/09/27	<0.140, EDL=0.140		pg/g	
		Octa CDD	2023/09/27	<0.249, EDL=0.249 (2)		pg/g	
		Total Tetra CDD	2023/09/27	<0.137, EDL=0.137		pg/g	
		Total Penta CDD	2023/09/27	<0.146, EDL=0.146		pg/g	
		Total Hexa CDD	2023/09/27	<0.138, EDL=0.138		pg/g	
		Total Hepta CDD	2023/09/27	<0.140, EDL=0.140		pg/g	
		2,3,7,8-Tetra CDF	2023/09/27	<0.149, EDL=0.149		pg/g	
		1,2,3,7,8-Penta CDF	2023/09/27	<0.122, EDL=0.122		pg/g	
		2,3,4,7,8-Penta CDF	2023/09/27	<0.176, EDL=0.176		pg/g	
		1,2,3,4,7,8-Hexa CDF	2023/09/27	<0.117, EDL=0.117		pg/g	
		1,2,3,6,7,8-Hexa CDF	2023/09/27	<0.117, EDL=0.117		pg/g	
		2,3,4,6,7,8-Hexa CDF	2023/09/27	<0.105, EDL=0.105		pg/g	
		1,2,3,7,8,9-Hexa CDF	2023/09/27	<0.132, EDL=0.132		pg/g	
		1,2,3,4,6,7,8-Hepta CDF	2023/09/27	<0.130, EDL=0.130		pg/g	
		1,2,3,4,7,8,9-Hepta CDF	2023/09/27	<0.151, EDL=0.151		pg/g	

Page 16 of 19

Bureau Veritas Job #: C368751 Report Date: 2023/10/13

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Site Location: Williams Lake Power Plant

Your P.O. #: CC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Descuent	UNITS	QC Limits
Daten	IIII	QC Туре	Octa CDF	2023/09/27	0.208, EDL=0.133	Recovery	pg/g	QC LIIIIIIS
			Total Tetra CDF	2023/09/27	<0.149, EDL=0.149		pg/g	
			Total Penta CDF	2023/09/27	<0.142, EDL=0.142		pg/g	
			Total Hexa CDF	2023/09/27	<0.117, EDL=0.117		pg/g	
			Total Hepta CDF	2023/09/27	<0.139, EDL=0.139		pg/g	
B153103	AGU	Method Blank	Confirmation C13-2378 TetraCDF Confirmation 2,3,7,8-Tetra CDF	2023/10/12 2023/10/12	<0.18, MDL=0.18	96	% pg/g	40 - 135

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery outside method acceptance criteria due to matrix effects
- (2) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Page 17 of 19

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

Page 18 of 19

Appendix B - Ash Analysis

US AU		Custody Tra	cking For	r m :	· Line		W70632		
Please use this form for custody tracking Please ensure your form has a barcode on number links your electronic submission	r a Bureau Veritas e	COC confirmation number in	n the top right h	and side. This	Las	st Sample: t Sample: nple Count:	with.	Jars (Amb	•
Relino	uished By		60.200.200.200		Rece	ved By			
Print 75mg	Date	2023/08/30		int	Ay Sign	Date			109/01
rob Stey Sign	Time (24	4 HR) / STONO YYYYMMYDD	HARIGN	INSQL W		Time (: Date	24 HR)	09	MMM/DD
samt 280	Time (24		1	Tris .	Sign		24 HR)	-	HAMINI HAMINI
Print Sig.	Date	YYYY/MM/DD. C	Pe	mt	Sign				/MM/00
	Time (2	4 HR) HH-MNA	I		(WASHING A	Time (24 HR)	H	Histor
npled By (Print)	#	of Coolers/Pkgs:	formation Ru	sh 🗍	Immediate 1	「est □	rite i keri	ood Resid	ue 🗌
mpled By (Print) Surab Steyl	#	of Coolers/Pkgs:	Ru	ro 🗆		Test 🗆	Foo	d Chemist	try 🗌
npled By (Print) Surab Stey! Received At	Lab Comments:	of Coolers/Pkgs:	Ru	Custod	ly Seal	Cooling Media	Foo	d Chemist	try □ e°C
Surob Steyl Received At		of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo	d Chemist	e°C 3
Surob Steyl		of Coolers/Pkgs:	Ru	Custod	ly Seal	Cooling Media Present (Y/N)	Foo	d Chemist	try □ e°C
Jarob Steyl Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	y Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo	d Chemist	e°C 3
Surob Stey! Received At [of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1	mperatur 2	e°C 3 19
Sures Steyl Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1	d Chemist	e°C 3
Sures Steyl Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1	mperatur 2	e°C 3 19
Sures Steyl Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Foo Te 1	mperatur 2	e°C 3 19
Surob Stey! Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Te:	mperatur 2 j 9	e°C 3 19
Surab Steyl Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Te:	mperatur 2	e°C 3 19
Sures Steyl Received At Labeled By	Lab Comments:	of Coolers/Pkgs:	Ru	Custod Present (Y/N)	ly Seal Intact (Y/N)	Cooling Media Present (Y/N)	Te:	mperatur 2 j 9	e °C 3 1 9 No 33/3

Appendix B - Ash Analysis

Project Information: C368751

 Job Received:
 2023/09/01 09:40

 Expected TAT:
 Standard TAT

 Expected Arrival:
 2023/08/31 15:00

 Submitted By:
 Jacob Steyl

Submitted To: Burnaby ENV: 4606

Canada Way

Invoice Information

Attn: Jacob Steyl ATLANTIC POWER (WILLIAMS LAKE) LTD. 4465 MACKENZIE AVENUE NORTH WILLIAMS LAKE, BC, V2G 5E8

Email to:

jsteyl@atlanticpower.com

Report Information

Attn: Jacob Steyl ATLANTIC POWER (WILLIAMS LAKE) LTD. 4465 MACKENZIE AVENUE NORTH WILLIAMS LAKE , BC , V2G 5E8

Email to:

jsteyl@atlanticpower.com

Project Information

Quote #: C21865, B71255, C30150

PO/AFE#: C

Project #:

Site Location: Williams Lake Power Plant

Analytical Summary

CSR PAH in Soil by GC-MS
TCLP Metals
Dioxins/Furans in Soil (EPS
1/RM/23)
Moisture
PAH TEQ Calculation, BC Reg.
132/92
TCLP pH Measurements

A: Standard TAT

	Ā	Met	1s/F /23	nre	EQ	표				
Client Sample ID	CInt Ref	Sampling Date/Time	Matrix	#Cont	CSR P	TCLP	Dioxir 1/RM	Moist	PAH T 132/9	TCLP
Glass Jars (Amber) filled with Ash	1	2023/08/30 15:30	SOIL	4	А	Α	А	А	А	А

Deadlines are estimates only and are subject to change. Please refer to your Job Confirmation report for final due dates.

Submission Information

of Samples:

imples:

Details: Add NONMATRIX code = ASH

Page 1 of 1