2019 Annual Report for Authorization 8808

Atlantic Power - Williams Lake Power Plant

Jacob Steyl

Executive Summary

This Report details the Environmental Emissions from January 1, 2019 to December 31, 2019 and fulfils the requirement of section 3.6 of Authorization 8808 [1].

No rail ties or greater than 1% construction and demolition (C&D) waste were used as feedstock during the reporting period. A total of 240,218 wet tonnes of clean biomass was incinerated during 3283 hours of normal operation.

During this time two discrete monitoring sessions (one for Air Discharge from the Stack and one for Ash Analysis) were performed. The test results were compared against the levels in Permit 8808 and the Hazardous Waste Regulation, and no exceedances of any of the parameters in Schedules A and D of the Permit measured.

Continuous Emissions Monitoring System (CEMS) measurements were also taken as required by the Permit throughout this Period, with no exceedances recorded.

Respectfully,

Jacob Steyl, P.Eng

January 13, 2020

Table of Contents

Table of Tables and Figures	ii
Nomenclature and Abbreviations	iii
1 Introduction	
2 Monthly Operating Hours	2
3 Fuel	2
4 Continuous Emissions Monitoring	
4.1 Sulphur Oxides	3
4.2 Nitrogen Oxides	3
4.3 Hydrochloric Acid	3
4.4 Combustion Temperature	3
5 Discrete Monitoring	4
5.1 Air Emissions Stack Test	4
5.2 Ash Testing	5
6 Exceedances	6
7 References	
Appendix A – Stack Particulate Test	8
Appendix B - Ash Analysis Report	46
Table of Tables and Figures	
Table 2-1: Operating hours per month	2
Table 3-1: Monthly and Annual Amounts of Fuel	2
Table 4-1: Maximum hourly NOx as NO ₂ per month and average for the Mo	
Table 5-1: Schedule A Discrete Monitoring Results	
Table 5-2: Schedule D Discrete Monitoring Results	
Fi	
Figure 1-1: Normal Operating time for 2019	
Figure 5-1: Hourly Average Steam Production data for 19 September 2019	Discrete Testing6

Nomenclature and Abbreviations

C&D - Construction and Demolition waste

MoE - Ministry of Environment

NO₂ - Nitrogen Dioxide

NO_x - Nitrogen Oxides

O₂ - Molecular Oxygen

TEQ - Toxic Equivalency

USEPA - United States Environmental Protection Agency

hr - Hour

kg/s - Kilograms per Second

lb/hr - Pounds per Hour

m³/s - Cubic Meter per second

mg/kg - Milligrams per Kilogram (1 ppm)

mg/L - Milligrams per Liter

mg/m³ - Milligrams per cubic Meter

MW - Megawatt

pg/g – Picogram per Gram (0.001ppb)

ppb - Parts Per Billion

ppm - Parts Per Million (1,000 ppb)

ton/hr - Imperial Ton per Hour

tonnes/hr - Metric Tonnes per Hour

1 Introduction

An amendment was issued for permit 8808 on 18 September 2019 to Atlantic Power Preferred Equity Ltd located at 4455 Mackenzie Ave N, Williams Lake, B.C., V2G 4R7. The revised permit calls for an Annual Report outlined in Section 3.6 of the Permit [1].

Jacob Steyl P.Eng, Maintenance Manager and Chris Turner, Controls Specialist were responsible for collecting data and compiling this report. A. Lanfranco & Associates Inc. and Bureau Veritas conducted discrete monitoring outlined in sections 3.1.2 Schedule A and 3.1.3 Schedule D of the Permit [1].

The reporting window for this Report is 00:00 on 1 January 2019 to 00:00 1 January 2020. The Plant was curtailed for extended periods during the year, as show in Figure 1-1 and Table 2-1.



Figure 1-1: Normal Operating time for 2019

As no rail tie material was used as feedstock during the reporting period – Test Regimes Schedule A and D apply.

Corrective and preventative maintenance, as well as calibrations, were performed on the Air Emissions Controls and Continuous Emissions Monitoring System (CEMS) equipment of the Authorized Works during the reporting period.

2 Monthly Operating Hours

Table 2-1 shows the operating time and time incinerating railway ties for each month.

Table 2-1: Operating hours per month

	Operating time ¹	Incinerating of Railway ties time ²
	hr	hr
Jan-19	689	0
Feb-19	672	0
Mar-19	237	0
Apr-19	380	0
May-19	70	0
Jun-19	0	0
Jul-19	0	0
Aug-19	464	0
Sep-19	448	0
Oct-19	0	0
Nov-19	0	0
Dec-19	323	0
2019 Totals	3283	0

3 Fuel

The fuel usage for the reporting period is shown in Table 3-1.

Table 3-1: Monthly and Annual Amounts of Fuel

	Rail ties Construction and Demolition Clean Biomass				
	wet tonnes	wet tonnes	wet tonnes		
Jan-19	0	0	54,458		
Feb-19	0	0	53,030		
Mar-19	0	0	17,808		
Apr-19	0	0	29,432		
May-19	0	0	5,135		
Jun-19	0	0	0		
Jul-19	0	0	0		
Aug-19	0	0	33,722		
Sep-19	0	0	29,469		
Oct-19	0	0	0		
Nov-19	0	0	0		
Dec-19	0	0	17,165		
2019 Totals	0	0	240,218		

¹ Operating time for Figure 1-1 and Table 2-1 is taken as combusting-biomass and breaker-closed time

² Number of hours incinerating rail ties or greater than 1% construction and demolition waste

4 Continuous Emissions Monitoring

4.1 Sulphur Oxides

No rail ties or greater than 1% C&D waste was used as feedstock during the reporting period, therefore no monitoring for Sulphur Oxides was required or conducted.

4.2 Nitrogen Oxides

The maximum hourly Nitrogen Oxides (NO_x) as Nitrogen Dioxide (NO_2) per month and average for the month at 8% O_2 is show Table 4-1. The Permitted hourly average is 320 mg/m³ at 8% O_2 [1].

Table 4-1: Maximum hourly NOx as NO₂ per month and average for the Month

, ,			
	Maximum Hourly Average	Monthly Average	
	mg/m³	mg/m³	
Jan-19	251	217	
Feb-19	245	219	
Mar-19	244	219	
Apr-19	239	222	
May-19	249	224	
Jun-19	-	1	
Jul-19	-	-	
Aug-19	251	233	
Sep-19	245	229	
Oct-19	-	1	
Nov-19	-	-	
Dec-19	242	210	

The average NOx emissions for the year was 222 mg/m³ at 8% O₂. The maximum hourly average for the year is well below the Permitted level.

4.3 Hydrochloric Acid

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring for Hydrochloric Acid was required or conducted.

4.4 Combustion Temperature

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period, therefore no monitoring of Combustion Temperature was required or conducted.

5 Discrete Monitoring

5.1 Air Emissions Stack Test

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule A applies.

The permitted levels under Schedule A [1] is stated in Table 5-1.

A. Lanfranco & Associates Inc was retained to perform an Emission Compliance Survey and Monitoring Report, as per Schedule A of the Permit. The Triplicate test average results for the listed parameters for the Main Stack on September 19, 2019 are summarised in Table 5-1. The complete report can be found in Appendix A – Stack Particulate Test.

Table 5-1: Schedule A Discrete Monitoring Results

Parameter	Test Average	Permit Limits
Rate of Discharge (m³/s)	96.8	110
Particulate (mg/m³ @ 8% O₂)	2.0	20

Both parameters measure are below permitted levels.

The average steam flow during the Stack Test on Sep 19 was 593.5 klb/hr (74.8 kg/s). This is 99% of the 90th percentile for the last 100 operating days and 108% of the average steam flow for the last 30 full operating days before the date of the test. The dates used for the last 100 operating days (shown in Figure 5-1) was 27 Jan 2019 to 11 Mar 2019, 15 Apr 2019 to 04 May 2019 and 12 Aug 2019 to 19 Sep 2019. The dates used for the last 30 full operating days was 20 Aug 2019 thru 19 Sep 2019.

5.2 Ash Testing

No rail ties or greater than 1% C&D waste were used as feedstock during the reporting period: Only Schedule D applies.

The permitted levels as per Schedule D [1] is stated in Table 5-2.

Bureau Veritas was commissioned to perform ash analysis on a single ash sample collected before ash conditioning during normal operation. The ash sample was collected on 19 September 2019 under the same conditions as the stack test was conducted. The results from the test is summarised in Table 5-2. The complete reports can be found in Appendix B - Ash Analysis.

Table 5-2: Schedule D Discrete Monitoring Results

Parameter	Average	Permitted Limits [2]
Arsenic (mg/L)	<0.10	2.5
Barium (mg/L)	1.45	100
Boron (mg/L)	2.62	500
Cadmium (mg/L)	<0.10	0.5
Chromium (mg/L)	<0.10	5
Copper (mg/L)	<0.10	100
Lead (mg/L)	<0.10	5
Mercury (mg/L)	<0.0020	0.1
Selenium (mg/L)	<0.10	1
Silver (mg/L)	<0.010	5
Uranium (mg/L)	<0.10	10
Zinc (mg/L)	<0.10	500
Dioxin/Furan TEQ (ppb)	0.06630	100
Polycyclic Aromatic Hydrocarbon TEQ (ppm)	0.026	100

All the parameters measured were well below the values stipulated in the Hazardous Waste Regulation [2].

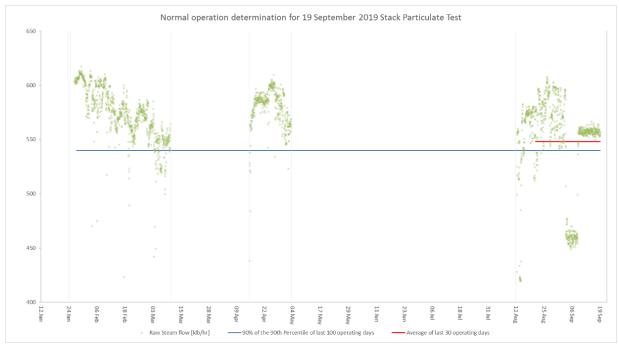
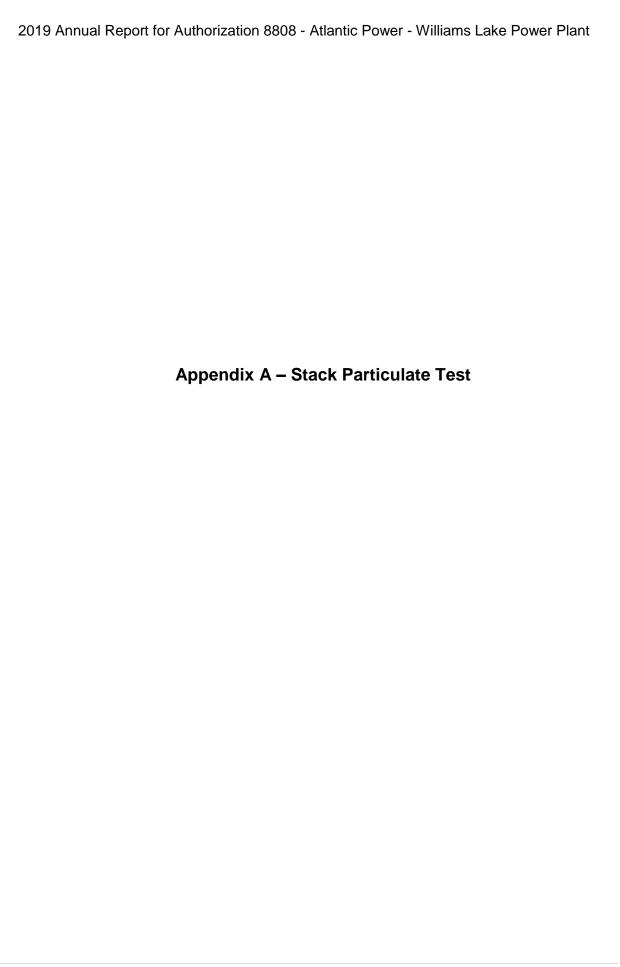
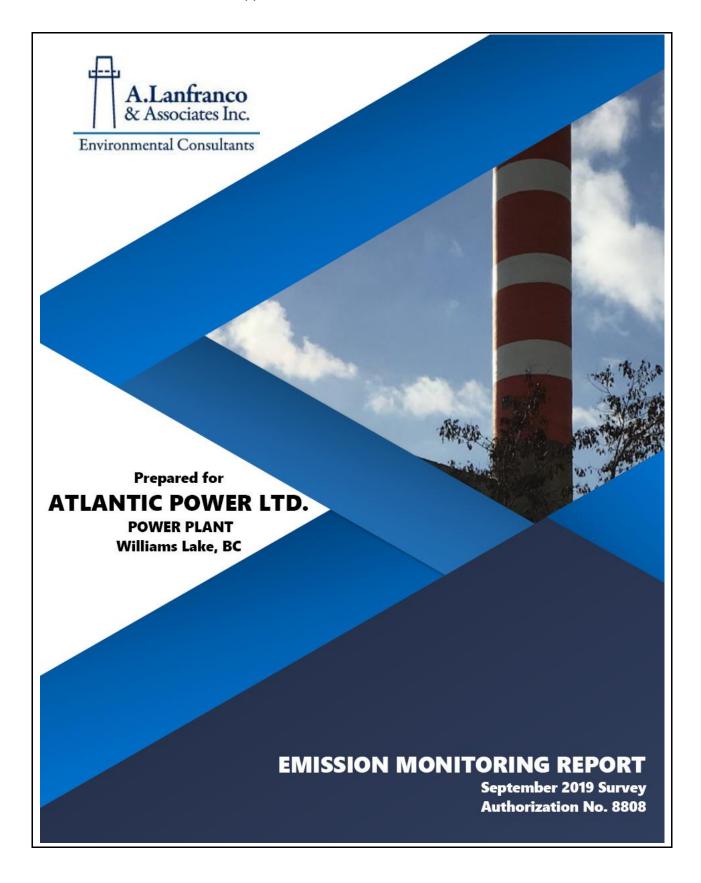


Figure 5-1: Hourly Average Steam Production data for 19 September 2019 Discrete Testing

6 Exceedances


No exceedances were recorded under normal operating conditions during the reporting period.


7 References

- [1] Ministry of Environment, "Permit 8808 Amended 18 September 2019," Environment Canada, Williams Lake, 2016.
- [2] Ministry of Attorney General, Hazardous Waste Regulation BC Reg 63/88, Victoria: Queens Printer, 1988.

Appendices

Appendix A – Stack Particulate Test	8
Appendix B - Ash Analysis	46

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual. The field crew consisted of:

Mr. L. Agassiz (certified) and Mr. M. Goods (certified).

The report was prepared by Mr. D. Sampson using reporting principles and guidelines generally acceptable to BC MOE.

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE approved reference methods for the parameters investigated.

Report reviewed by:

Mark Lanfranco, CST President | Owner

TABLE OF CONTENTS

1		TEST PROGRAM ORGANIZATION	1
2		SUMMARY	2
3		INTRODUCTION	3
4		PROCESS DESCRIPTION	3
5		METHODOLOGY	4
	5.1	Sampling Techniques	4
	5.2	Analytical Techniques	8
6		RESULTS	8
7		DISCUSSION OF RESULTS	11

APPENDICES

Appendix 1 - Computer Outputs of Measured and Calculated Data

Appendix 2 - Calculations

Appendix 3 - Field Data Sheets and Process Data

Appendix 4 - Calibration Data and Certifications

1 TEST PROGRAM ORGANIZATION

Contractor:

Plant Testing Coordinator: Mr. Jacob Steyl

Maintenance Manager

4455 Mackenzie Avenue North

Williams Lake, B.C. Canada V2G 5E8

Email: steyl@atlanticpower.com

Project Manager/Sampling Mr. Mark Lanfranco

President | Owner

A. Lanfranco and Associates Inc.

101-9488 189 St

Surrey, B.C. Canada V4N 4W7

Email: mark.lanfranco@alanfranco.com

Sampling Crew: Mr. L. Agassiz - A. Lanfranco and Associates Inc.

Mr. M. Goods - A. Lanfranco and Associates Inc.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

2 SUMMARY

The following table presents the triplicate test average results for the listed parameters for the Biomass fuelled boiler stack on September 19, 2019.

Parameter	Average	Permit Limits
2	·	
Particulate (mg/Sm ³)	2.4	
Particulate (mg/Sm ³ @ 8% O ₂)	2.0	20
Particulate (kg/hr)	0.8	
2		
Flowrate (Sm ³ /min)	5810	
Flowrate (Sm ³ /sec)	96.8	110
O ₂ (vol % dry)	5.5	
CO ₂ (vol % dry)	15.3	

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

3 INTRODUCTION

Atlantic Power Corporation commissioned A. Lanfranco & Associates Inc. to conduct an emission survey at their Power Plant in Williams Lake, BC. Emission tests were conducted on a wastewood fired co-generation power plant to meet the air monitoring requirement prescribed by British Columbia Ministry of Environment (BC MOE) Permit PA-8808.

On September 19, 2019 triplicate emission tests were performed for the following parameters:

- particulate concentration and emission rate
- discharge rate (flow rate)
- gas composition (CO₂, O₂ and moisture)

This report contains details of the test results and methodologies utilized.

4 PROCESS DESCRIPTION

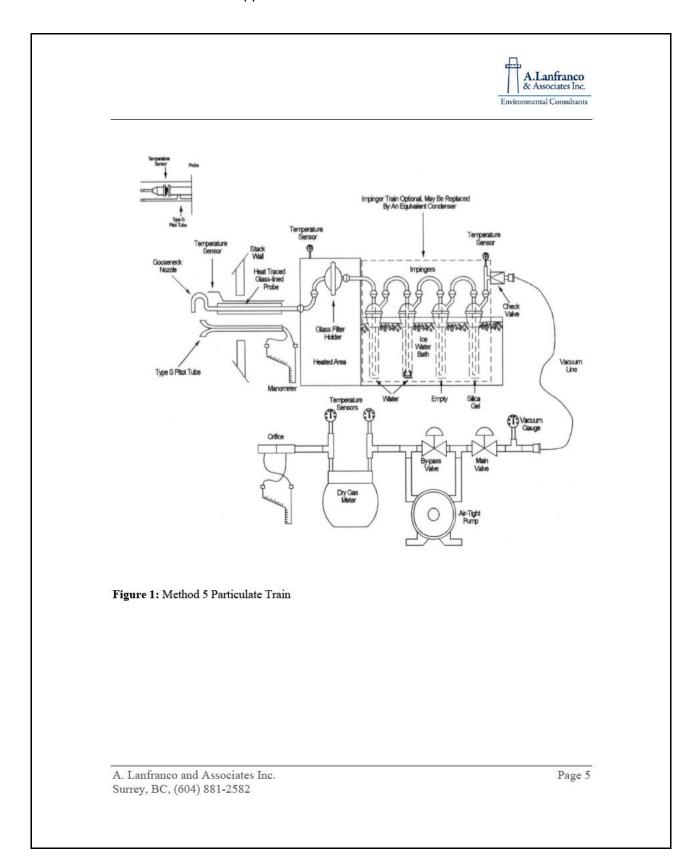
The process under investigation during this survey is a wood fuelled Boiler discharging through a 3.5 meter stack. This process discharges to atmosphere following emission control by multi-clones, and a five field electrostatic precipitator.

Operational data is shown in Table 3 in the results section, with additional data in Appendix 3.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

5 METHODOLOGY

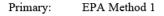
The sampling and analytical methods used throughout this survey conform to the procedures outlined in the BC source testing code and the BC air analytical manual. The following table shows the methodology followed.

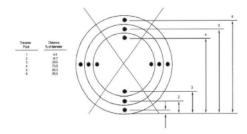

<u>Parameter</u>	Reference Method
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse Points
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
Gas molecular weight (O ₂ /CO ₂)	EPA Method 3 Gas Analysis for the Determination of Dry Molecular Weight
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content
Particulate Matter	EPA Method 5 Determination of Particulate Matter Emissions from Stationary Sources

5.1 Sampling Techniques

Sampling of particulate (EPA Method 5) from the Main Stack was conducted using CAE and Apex sampling trains equipped with heated filter assemblies and a heated four-foot probe (Fig. 1). The impinger sections of the sampling trains were charged with de-ionized water for moisture determination. Cyclones were not used as part of the sampling apparatus.

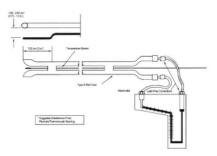
The stack was checked for cyclonic flow using methods outlined in the source test code. No cyclonic flow condition existed.


A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582



Sampling Site and Traverse Points

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas. At Williams Lake, four traverses of 3 points for a total of 12 points were measured per test.


Figure 2. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Each point (equal area method) was sampled for 5 minutes (figure 4/4a) resulting in final sample volumes of about 1.1-1.13 cubic meters.

Stack Gas Velocity and Volumetric Flow Rate

The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an S-type pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to occur. Stack gas volumetric flow rate is determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

Primary: EPA Method 2

Figure 3. Type S Pitot Tube Manometer Assembly

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

Figure - 4 Location of Traverse Points in Circular Stacks

(inches from inside wall to traverse point)

Client Stack I.D.: Atlantic Power

Diameter (inches) 138
Total Points 12 Diameters Upstream: > 2
of Ports Used 4
Points / Traverse 3 Diameters Downstream: > 8

Point	Distance from Wall	Λ	
1	6.1	_ ^	
2	20.1	^	distance A*
3	40.8	sample location	
		^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	distance B*
		^< < <	< < < <

* distance A: duct diameters upstream from flow disturbance
* distance B: duct diameters downstream from flow disturbance

< < < : flow direction

Figure 4a <u>Location of Traverse Points in Circular Stacks</u>

(percent of diameter from inside wall to traverse point)

Traverse Point Number on a	Number of Traverse Points on a Diameter					
Diameter	2	4	6	8	10	12
1	14.6%	6.7%	4.4%	3.2%	2.6%	2.1%
2	85.4%	25.0%	14.6%	10.5%	8.2%	6.7%
3		75.0%	29.6%	19.4%	14.6%	11.8%
4		93.3%	70.4%	32.3%	22.6%	17.7%
5			85.4%	67.7%	34.2%	25.0%
6			95.6%	80.6%	65.8%	35.6%
7				89.5%	77.4%	64.4%
8				96.8%	85.4%	75.0%
9					91.8%	82.3%
10					97.4%	88.2%
11						93.3%
12						97.9%

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

Molecular Weight by Gas Analysis

Primary:

EPA Method 3/3a

An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Moisture Content

Primary:

EPA Method 4

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

5.2 Analytical Techniques

Gravimetric analysis of the particulate samples was conducted by A. Lanfranco and Associates Inc. at their Surrey laboratory. All filters were conditioned by 105 °C drying, desiccation for 24 hours, and weighing of the particulate.

Probe washings were evaporated to dryness in porcelain dishes, desiccated for 24 hours and weighed. Blanks were carried through all procedures.

6 RESULTS

The results of the particulate and stack parameters were calculated using a computer program consistent with reporting requirements of BC MOE. Standard conditions used were 20 $^{\circ}$ C and 101.325 kPa (dry). Particulate concentrations were corrected to 8% O₂.

The "actual" flowrates results are volumetric flowrates at stack conditions. Detailed test results are presented in Table 1. Supporting data is presented in Table 2 and the Appendices. Calculations are presented in Appendix 2.

TABLE 1: MAIN STACK EMISSION RESULTS

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

Parameter	Test 1	Test 2	Test 3	Average
Test Date	19-Sep-19	19-Sep-19	19-Sep-19	•
Test Time	09:59 - 11:05	11:35 - 12:41	12:59 - 14:03	
Duration (minutes)	60	60	60	60
Particulate (mg/Sm³)	2.3	2.4	2.4	2.4
Particulate (mg/Sm ³ @ 8% O ₂)	1.9	2.0	2.0	2.0
Particulate (Kg/hr)	0.8	0.8	0.9	0.8
Particulate (Kg/day)	20.1	19.4	20.5	20.0
Flowrate (Sm ³ /min)	5936	5663	5843	5814
Flowrate (Sm ³ /sec)	98.9	94.4	97.4	96.9
Flowrate (Am³/min)	11317	10850	11193	11120
Temperature (°C)	153	153	153	153
O2 (vol % dry)	5.3	5.8	5.5	5.5
CO ₂ (vol % dry)	15.5	15.3	15.0	15.3
H ₂ O (vol %)	17.3	17.6	17.6	17.5
Isokinetic Variation (%)	101	92.5	91.5	94.9

Standard conditions of 20 °C and 101.325 kPa (dry)

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

TABLE 2: GRAVIMETRIC RESULTS

	Initial (g)	Final (g)	Net (g)	Blank Corrected Net (g)					
Atlantic Power Main Stack									
Filters									
Run 1	0.3527	0.3552	0.0025	0.0027					
Run 2	0.3536	0.3558	0.0022	0.0024					
Run 3	0.3399	0.3422	0.0023	0.0025					
Blank	0.3541	0.3539	-0.0002						
Probe Washes									
Run 1	113.6068	113.6100	0.0032	0.0000					
Run 2	115.0542	115.0572	0.0030	0.0000					
Run 3	99.7506	99.7525	0.0019	0.0000					
Blank	116.2408	116.7525	0.5117						
Silica Gels									
Run 1	200.0	210.4	10.4	10.4					
Run 2	200.0	208.0	8.0	8.0					
Run 3	200.0	207.0	7.0	7.0					

TABLE 3: OPERATING CONDITIONS

Steam Flow (K lbs./hour)

Main Stack	593

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

7 DISCUSSION OF RESULTS

The average particulate result for this survey was $2.0~\text{mg/sm}^3$ @ $8\%~O_2$ and is well below the permitted level of $20~\text{mg/sm}^3$ @ $8\%~O_2$. The results for particulate matter are comparable to previous results from this source.

The average flow rate measurement of 96.8 Sm³/sec was also within the allowable limit of 110 Sm³/sec.

There were no problems encountered in sample collection or analysis. Samples were collected isokinetically at all points and sampling equipment was operated in a normal steady manner during testing. The test results, therefore, are considered to be an accurate representation of emission characteristics for the process conditions maintained on the test date.

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

APPENDIX 1	
COMPUTER OUTPUTS OF MEASURED AND CALCULATED DATA	

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 19-Sep-19 Jobsite: Williams Lake, B.C. Run: 1 - Particulate 09:59 - 11:05 Source: Main Stack Run Time:

0.0010 gr/dscf Particulate Concentration: 2.3 mg/dscm

1.2 mg/Acm 0.0005 gr/Acf

1.9 mg/dscm (@ 8% O2) 0.0008 gr/dscf (@ 8% O2)

Emission Rate: 0.84 Kg/hr 1.842 lb/hr

Sample Gas Volume: 1.1507 dscm 40.637 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 100.8 %

Flue Gas Characteristics

Moisture: 17.28 %

Temperature 152.5 °C 306.6 °F

5936.1 dscm/min 209633 dscf/min Flow 98.93 dscm/sec 3493.9 dscf/sec

11317.2 Acm/min 399665 Acf/min

Velocity 19.547 m/sec 64.13 f/sec

Gas Analysis 5.25 % O₂ 15.50 % CO₂

> 30.690 Mol. Wt (g/gmole) Dry 28.497 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

5.0

8.0

Minutes Per Point

Port Length (inches)

Client: Atlantic Power Date: 19-Sep-19 Jobsite: Williams Lake, B.C. Run: 1 - Particulate 09:59 - 11:05 Source: Main Stack Run Time:

Control Unit (Y)	0.9902	Gas Analysis (Vol. %):			
Nozzle Diameter (in.)	0.2471	CO_2	O_2		
Pitot Factor	0.8473	16.00	5.00		
Baro. Press. (in. Hg)	27.57	16.00	5.00		
Static Press. (in. H ₂ O)	-0.25	15.00	5.50		
Stack Height (ft)	200	15.00	5.50		
Stack Diameter (in.)	138.0	Average = <u>15.50</u>	5.25		
Stack Area (sq.ft.)	103.869				
Minutes Per Reading	5.0				

Total Gain (grams) 180.4

Impinger 4 (grams) 10.4

Impinger 1 (grams) 140.0 Impinger 2 (grams) 21.0 Impinger 3 (grams)

9.0

Condensate Collection:

Collection:

0.0027 Filter (grams) Washings (grams) 0.00000.0000Impinger (grams) 0.0027Total (grams)

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	as Temperature Outlet (°F)	Stack (°F)	Wall Dist. (in.)	Isokin.
		0.0	439.551							
1	1	5.0	443.830	1.100	2.26	62	62	308	6.1	101.1
	2	10.0	448.110	1.100	2.26	62	62	308	20.1	101.1
	3	15.0	452.090	0.950	1.96	63	63	307	40.8	100.9
		0.0	452.090							
2	1	5.0	455.380	0.640	1.33	65	65	305	6.1	100.9
	2	10.0	458.810	0.700	1.45	65	65	308	20.1	100.8
	3	15.0	462.270	0.710	1.47	66	66	308	40.8	100.8
		0.0	462.270							
3	1	5.0	465.280	0.550	1.11	68	68	306	6.1	99.0
	2	10.0	468.370	0.560	1.17	69	69	307	20.1	100.6
	3	15.0	471.420	0.540	1.13	70	70	305	40.8	100.8
		0.0	471.420							
4	1	5.0	475.500	0.960	2.02	73	73	306	6.1	100.9
	2	10.0	479.870	1.100	2.52	73	73	307	20.1	101.1
	3	15.0	483.850	0.900	1.91	75	75	304	40.8	101.1
			Average:	0.818	1.716	67.6	67.6	306.6		100.8

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 19-Sep-19 Jobsite: Williams Lake, B.C. Run: 2 - Particulate Main Stack 11:35 - 12:41 Source: Run Time:

0.0010 gr/dscf Particulate Concentration: 2.4 mg/dscm

1.2 mg/Acm 0.0005 gr/Acf

2.0 mg/dscm (@ 8% O2) 0.0009 gr/dscf (@ 8% O2)

Emission Rate: 0.81 Kg/hr 1.783 lb/hr

Sample Gas Volume: 1.0082 dscm 35.604 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 92.5 %

Flue Gas Characteristics

Moisture: 17.64 %

Temperature 152.8 °C 307.1 °F

5663.0 dscm/min 199987 dscf/min Flow 94.38 dscm/sec 3333.1 dscf/sec 10850.0 Acm/min 383168 Acf/min

Velocity 18.740 m/sec 61.48 f/sec

Gas Analysis 5.75 % O₂ 15.25 % CO₂

> 30.670 Mol. Wt (g/gmole) Dry 28.435 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

A. Lanfranco and Associates Inc. - Emission Report

19-Sep-19 Client: Atlantic Power Date: Jobsite: Williams Lake, B.C. Run: 2 - Particulate 11:35 - 12:41 Source: Main Stack Run Time:

Control Unit (Y)	0.9902	Gas Analysis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.2471	CO_2	O_2	Impinger 1 (grams) 1	30.0
Pitot Factor	0.8473	15.00	6.00	Impinger 2 (grams)	22.0
Baro. Press. (in. Hg)	27.57	15.00	6.00	Impinger 3 (grams)	2.0
Static Press. (in. H ₂ O)	-0.25	15.50	5.50	Impinger 4 (grams)	8.0
Stack Height (ft)	200	15.50	5.50	<u></u>	
Stack Diameter (in.)	138.0	Average = <u>15.25</u>	<u>5.75</u>		
Stack Area (sq.ft.)	103.869			Total Gain (grams) 1	62.0

Minutes Per Reading 5.0 Minutes Per Point 5.0

Collection: Port Length (inches) 8.0

0.0024 Filter (grams) Washings (grams) 0.00000.0000Impinger (grams) Total (grams) 0.0024

Traverse	Point	Time (min.)	Dry Gas Meter	Pitot ^P (in. H ₂ O)	Orifice ^H (in. H ₂ O)	Dry Ga Inlet (°F)	as Temperatus Outlet (°F)	e Stack (°F)	Wall Dist. (in.)	Isokin.
		0.0	485.660							
1	1	5.0	489.310	0.890	1.59	80	80	305	6.1	92.6
	2	10.0	493.150	0.990	1.77	80	80	307	20.1	92.6
	3	15.0	496.700	0.840	1.50	80	80	305	40.8	92.7
		0.0	496.700							
2	1	5.0	499.270	0.440	0.79	82	82	307	6.1	92.3
	2	10.0	502.080	0.530	0.95	80	80	307	20.1	92.4
	3	15.0	504.840	0.510	0.91	80	80	306	40.8	92.4
		0.0	504.840							
3	1	5.0	507.690	0.540	0.97	82	82	307	6.1	92.5
	2	10.0	511.030	0.740	1.33	83	83	308	20.1	92.6
	3	15.0	514.300	0.710	1.25	83	83	307	40.8	92.4
		0.0	514.300							
4	1	5.0	517.970	0.890	1.60	85	85	309	6.1	92.5
	2	10.0	521.860	1.000	1.80	85	85	309	20.1	92.6
	3	15.0	525.580	0.910	1.64	85	85	308	40.8	92.7
			Average:	0.749	1.342	82.1	82.1	307.1		92.5

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 19-Sep-19 Jobsite: Williams Lake, B.C. Run: 3 - Particulate Main Stack 12:59 - 14:03 Source: Run Time:

Particulate Concentration: 2.4 mg/dscm 0.0011 gr/dscf

1.3 mg/Acm 0.0006 gr/Acf

2.0 mg/dscm (@ 8% O2) 0.0009 gr/dscf (@ 8% O2)

Emission Rate: 0.85 Kg/hr 1.880 lb/hr

Sample Gas Volume: 1.0280 dscm 36.305 dscf

Total Sample Time: 60.0 minutes

Average Isokineticity: 91.5 %

Flue Gas Characteristics

Moisture: 17.62 %

Temperature 152.8 °C 307.1 °F

5843.1 dscm/min 206351 dscf/min Flow 97.39 dscm/sec 3439.2 dscf/sec

11193.0 Acm/min 395281 Acf/min

Velocity 19.333 m/sec 63.43 f/sec

Gas Analysis 5.50 % O₂ 15.00 % CO₂

> 30.620 Mol. Wt (g/gmole) Dry 28.396 Mol. Wt (g/gmole) Wet

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Condensate Collection:

Impinger 1 (grams) 127.0 Impinger 2 (grams) 28.0 Impinger 3 (grams)

Total Gain (grams) 165.0

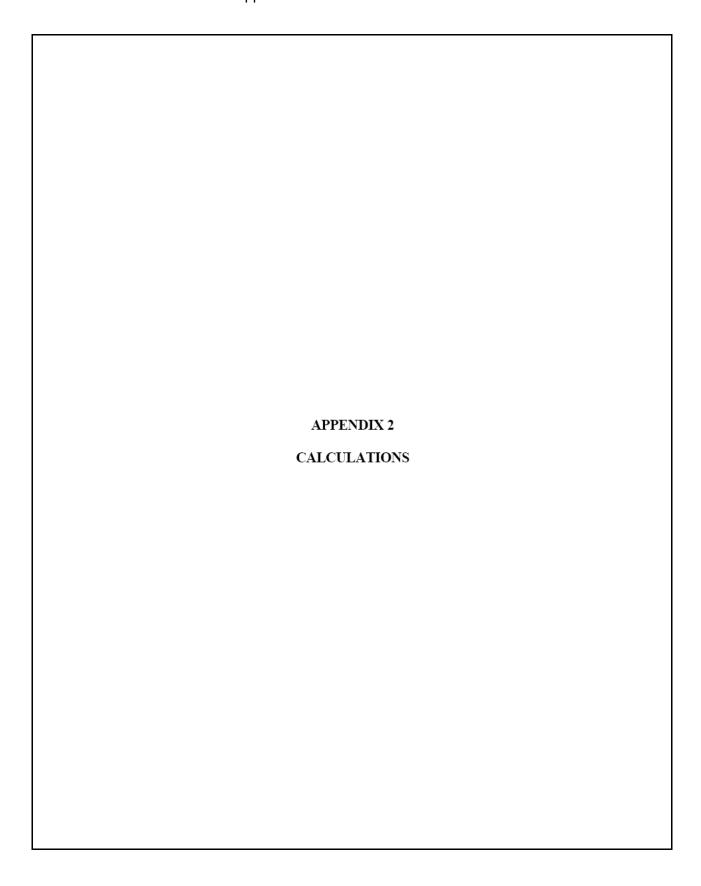
Impinger 4 (grams)

3.0

7.0

A. Lanfranco and Associates Inc. - Emission Report

Client: Atlantic Power Date: 19-Sep-19 Jobsite: Williams Lake, B.C. Run: 3 - Particulate Main Stack Run Time: 12:59 - 14:03 Source:


Control Unit (Y)	0.9902	Gas Analysis (Vol. %):		
Nozzle Diameter (in.)	0.2471	CO_2	O_2	
Pitot Factor	0.8473	15.00	5.00	
Baro. Press. (in. Hg)	27.57	15.00	5.00	
Static Press. (in. H ₂ O)	-0.25	15.00	6.00	
Stack Height (ft)	200	15.00	6.00	
Stack Diameter (in.)	138.0	Average = <u>15.00</u>	5.50	
Stack Area (sq.ft.)	103.869			
Minutes Per Reading	5.0			

Minutes Per Point Collection: Port Length (inches) 8.0

5.0

0.0025 Filter (grams) Washings (grams) 0.00000.0000 Impinger (grams) 0.0025 Total (grams)

Dry Gas Temperature Wa11 Dry Gas Meter Pitot ^P Point Orifice ^H Inlet Outlet Dist. Traverse Time Stack Isokin. (min.) (°F) (in.) 526.552 530.310 0.950 1.67 86 91.5 15.0 537.850 0.940 1.66 86 309 40.8 537.850 540.780 544.110 15.0 547.600 0.810 1.43 308 40.8 547.**6**00 550.440 0.530 0.95 553.410 556.280 10.0 15.0 1.03 20.1 0.540 303 1.73 6.1 10.0 564.020 1.79 567.770 1.65 15.0 0.920 307 40.8 91.5 1.409 91.5 Average:

Appendix 2 Calculations

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-12 were used to calculate particulate concentration at standard conditions on a dry basis. Equations 13-27 were used to sample within the 100 ± 10% isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 28-30 were used to calculate the volumetric flowrate of the stack flue gas.

A2.1 Contaminant Concentration Calculations
$$c = \frac{m}{V_{std}}$$
 Equation 1
$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2
$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3
$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4
$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
 Equation 5
$$V_{samp} = V_{final} - V_{init}$$
 Equation 6
$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7
$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}, where \ n = the \ number \ of \ points$$
 Equation 8
$$OC = \frac{20.9 - \% O_{2c}}{20.9 - \% O_{2m}}$$
 Equation 9
$$CO2C = \frac{\% CO_{2c}}{\% CO_{2m}}$$
 Equation 10
$$\% O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% O_{2i}, where \ n = the \ number \ of \ O_2 \ measurements$$
 Equation 11
$$\% CO_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% CO_{2i}, where \ n = the \ number \ of \ CO_2 \ measurements$$
 Equation 12

Appendix 2 Calculations

Where,

= Contaminant concentration С m= Contaminant mass m_i = Net analytical mass (mg, ng, or μg) = Analytical mass (mg, ng, or μg) Mana,i *Mblank* = Blank analytical mass (mg, ng, or μg) Mpart = Total particulate mass (mg) = Net particulate gain from filter (mg) *Mfilter* = Net particulate gain from probe wash (mg) m_{pw} = Sample volume at standard conditions (ft3) Vstd(imp) = Sample volume at standard conditions (m³) V_{std} = Sample volume at actual conditions (ft3) V_{samp} V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) = Standard temperature (68 °F) T_{std} = Gas meter temperature (°F) T_m $T_{m(ave)}$ = Average gas meter temperature (°F) P_{m} = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg) = Average of individual point orifice pressures (inches of H_2O) ΔH_{ave} = Individual recorded point orifice pressures (inches of H2O) $\Delta H_{i(act)}$ OC = Oxygen correction factor (dimensionless) CO2C = Carbon dioxide correction factor (dimensionless) $\%O_{2c}$ = Oxygen concentration to correct to (% dry basis) = Average measured stack gas oxygen concentration (% dry basis) $%O_{2m}$ = Carbon dioxide concentration to correct to (% dry basis) %CO2c $%CO_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

A.Lanfranco & Associates Inc.

Appendix 2 Calculations

A2.2 Isokinetic Variation Calculations

Appendix 2 Calculations

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n =$ the number of points

Equation 26

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Equation 27

Where,

 $A_n = Nozzle area (ft^2)$

d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H_2O)

 P_g = Stack Static pressure (inches of H₂O) P_{stk} = Absolute stack pressure (inches of Hg) M_w = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

%CO₂ = Stack gas carbon dioxide concentration (% dry basis)
 %O₂ = Stack gas oxygen concentration (% dry basis)
 Bwo = Stack gas water vapour, proportion by volume

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

(ft³)

 V_{gain} = Condensate gain of impinger contents (mL)

 P_{std} = Standard pressure (29.92 inches of Hg)

 V_{stk} = Average flue gas velocity (ft/sec)

 V_{i} = Individual point flue gas velocity (ft/sec)

 V_{nz} = Average velocity at nozzle(ft/sec)

 I_{SOi} = Individual point velocity at nozzle(ft/sec)

 I_{SOi} = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (tt^3 /min)

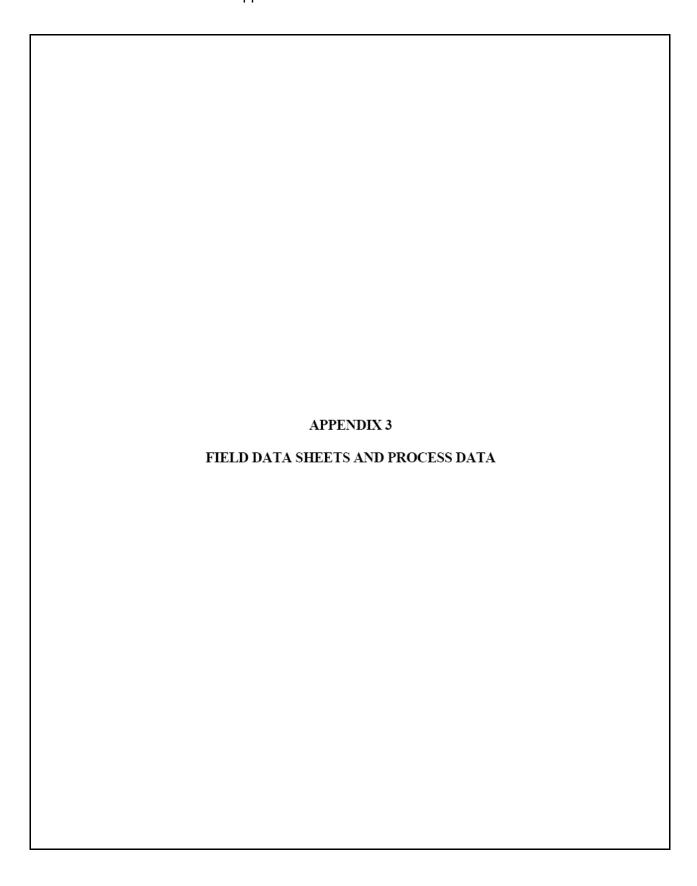
Appendix 2 Calculations

A2.3 Volumetric Flowrate Calculations

$$Q_{S} = Q_{A} \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
 Equation 28

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
 Equation 29

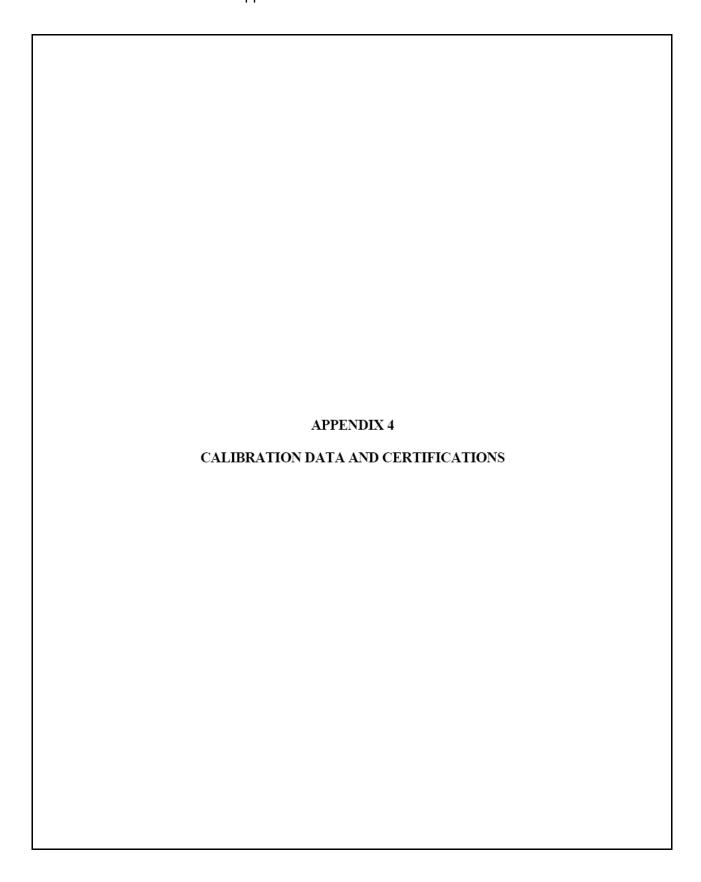
$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$
 Equation 30


Where,

 $Q_A = Actual flowrate (Am^3/min)$

 $Qs = Flowrate (m^3/min)$ at standard conditions on a dry basis

 A_{stk} = $Area of stack (ft^2)$


d = Diameter of stack (inches)

Z	TOTAL GAIN (mL) (LLO) (PLO) (P		
	FINAL (mL)	Less O ₂ Vol. %	\(\sigma_1 \)
			5
	MPINGER, INITIA VOLUMES (mt.) Imp. #1 \CX Imp. #2 \CX Imp. #3 \CX Imp. #4 \CX Imp. #5 \CX Imp. #6 \CX Imp. #5 \CX Imp. #6 \CX Imp. #6 \CX Imp. #6 \CX Imp. #6 \CX	Pump Vac. N. Hg	t t
	FR. IN 2471	Impiriger Exit S	25 75
	DIAMETER, IN. GP 0-82 -0.25 O(02,15"		957
	NOZZLE S.TS.G. DIAMETE PROBE L.A.A. Gp PORT LENGTH 8" STATIC PRESSURE, IN HZO -0.05 STACK DIAMETER 178* STACK HEIGHT 2000 (Q. 1) INITIAL LEAK TEST 0 000 (Q. 1) FINAL LEAK TEST 0 000 (Q. 1)		7.55
	NOZZLE S.TS.G. DIV PROBE L.P.A.D. PORT LENGTH 8" STATIC PRESSURE, IN HZOC. STACK DIAMETER 178* STACK HEIGHT 20001 NITIAL LEAK TEST 6"0001 FINAL LEAK TEST 6"0001	Slack	X20
	PROBE PORT L STATIC STACK STACK STACK STACK STACK	AH Dry Gas Outlet 62 62 65 65 65 65 66 66 66 66	
	1.80 t	S C C C C C C C C C C C C C C C C C C C	14304
	→ N N N N N N N N N N N N N N N N N N N	Pitot AP IN 11,0 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
es Inc.	Coner Row Cold Row Cold Row Cold Row	Dry Gas Meter ft. 1, 34 564 1, 1, 2, 8, 3 1, 4, 8, 1, 1 1, 5, 2, 8 1, 5, 2, 8 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 3, 3 1, 6, 8, 8, 3, 3 1, 6, 8, 8, 3, 3 1, 6, 8, 8, 3, 3 1, 6, 8, 8, 3, 3 1, 6, 8, 8, 8, 8 1, 6, 8, 8, 8, 8 1, 6, 8, 8, 8 1, 7, 8, 8, 8 1, 8, 8, 8, 8 1, 8, 8, 8, 8 1, 8, 8 1, 8, 8 1, 8, 8	4. S.
and Associat	ALLANTIC & FORTING SECTION SEC		
A. Lanfranco and Associates Inc.	CLIENT AGENTIC POWER SOURCE FRECON PARAMETER INNIND POCETU DATE OFFERTOR: CONTROL UNIT CAG SOCIAL BAROMETRIC PRESSURE. IN HG ASSUMED MOISTURE, BW 178	Clock Time	2 7 2 3 1105

CLIENT Atlantac bare													
	ő			PROBE 1, A-0	02-15	DIAME	DIAMETER, IN. O. Q.C. 7-C	2471	MPINGER	INITIAL	FINAL	TOTAL GAIN	SAIN
URCE FARCE SECO	Z			1			0		Imp. #1		0 A C	(III)	
PARAMETER / RUN'NO (GCE!	Pertic RUNAS			PORT LENGTH	STH 8"				Imp. #2	100	12.24	12%	
DATE SEPT-19-7019				STATIC PR	STATIC PRESSURE, IN. H2O - C. Q.S	H20 - 0.0			lmp. #3	0	1 2	2	
CONTROL UNIT CAS COSO		00000	0	STACK DIAMET	METER 192	28			lmp. #4	556	2	2	
		AF® 1.8A	1 4			Q			mp.#3				
BAROMETRIC PRESSURE, IN. Hg	27.	57		INITIAL LEAK TEST	K TEST 6.	0001 6	1.5u		Upstream Diameters	iameters			
SUMED MOISTURE, BW 94				FINAL LEAK TEST		0.00016.15°	ام		Downstream Diameters	Diameters			
Clock Time Dry Gas Meter ff	Meter ff	Pitot AP	Orifice AH			Tommosophico 01				-			
1		Z Z	N H.O	Day Gas	Cenal	Desker I			rump vac.	2	Fyrites		
1135 1485,660	999	27		Outlet	Outch	LIODE	pox	Impinger	IN. Hg	Vol. %	O ₂		
t		b8: 0	1.59	80	305	7156	196	65	2	701.79	V UL. 70		
1.42.1		0.00	14 ·	× ×	404	-	Í	1	1	2	٥		
t.9.57		t% 0		8	305	95%	256	24.5	-				
)	+				
17.667		ならの	6.49	82	<u>ځ</u> وځ	255	908	56	2.6	7	1		
502.0		0.53	26.0	80	507				1	1	D		
8.405		0.51	15.0	8	38	256	256	1>	Ν.				
52+53		0.54	0.97	8.5	204	255	252	75	2	15.5	5.5		
2110		410	1.85	83	308								
0.410		14.6	07.1	8 8	t R	582	7.55	28	3.5				
513	T	0000	/ /	20	200	220	1311		,	4	,		
721.8			00	0 X	200	252	8	20	5.5	15.5	5	1	
19.41 50 5	Ī	0.0	17.1	333	300	220	276	-	-				
t	T	:	+	00	0	7.50	207	ā	ŧ			1	
												1	
										I		1	
												t	
	1					Ī							
	T												
												1	
												+	
										Ī			

TOTAL GAIN	(mL)	8	2					-			\mid	L	-				1	+	-	H	+	+	-	L		-	+	+		\downarrow	\downarrow	H	H	+
H	-	8 418	-	+	-			-	Τ	%	\vdash					+	+	+		$\ $	+	+				\parallel	+	+		+	+			+
F	(JE)	8118	~		-		g	Fortine	d	_	╀				M	\downarrow	+	1			-	9	1				4	1		+	\downarrow		\prod	1
		100	-1	3	Ļ	Upstream Diameters	Downstream Diameters		É	Vol. %	4				15			4			4	1	\downarrow			\downarrow	1				l			
IMPINGER	Imp. #1	Imp. #2	lmp. #3	Imp. #5	lmp. #6	Upstream	Downstrea	Pumn Vac	N He		s S		±		M	,	8 S	ħ	1		4	1	5											
1277	13								Impinger	Exit	52		87		51		24	57		75	2.7	3	54				-							
DIAMETER, IN. O. 947	50.0					1.5	2		Box		£57		±57		457	0,00	22	200		422	250	0	255	Н		1	1	T		1	T		1	T
DIAMETE	3		-6.25			φ (α	0.000 als	Temperature °F	Probe	:	55%	Н	7.55	7	9.55	-	727	1	H	552	955	t	455	Н		+	\dagger			\dagger			+	t
200		£		200%	3			Tem	Stack		30d 0	Н	Н	+	+	+	+	5	\vdash	Н	+	+	1 +98	Н	1	+				+		$\ $	+	+
1		PORT LENGTH	STATIC PRESSURE	STACK HEIGHT 700		INITIAL LEAK TEST	EAK TEST		H	-	36	8	3	7	300+	†	Ť	30	30	303	4	**	K X		+		+	H	-	+	L		+	$\frac{1}{1}$
NOZZLE		PORT	STATIC	STACK	L	INITIAL	FINAL		Dry Gas	Outlet	98	8	98	0	XX	+ (x XX X	00	6	90	15	Q	0	93			1	1			1	L		\downarrow	_
				30	6			Orifice AH	IN. H,O		£9·\	14.	1.66)) 	- N	CH:	0.95	1.03	Ç.	1.32	7	1.65											
		#5		0.9900	408 \ 904	l+		Pitot AP	IN. H ₂ O		36.6	56.0	0.94	3	0.57	40	10.0	3.53	0.58	3.54	120	-	0.92										Ī	
		Rin &		>	V	5.46		ter ft'			Ì				T	Ť		T		~	T				1	\dagger	+		1	T			\dagger	t
Priver	Steelel	800	6	3099		BAROMETRIC PRESSURE, IN. Hg		Dry Gas Meter ft		526.552	530.51	3t. []	134.86	9	S40. +8		0.1-1.0	550.00	141.855	256-92	11.07	10 17	567.77											
	450	RUN NO	ģ -	SAF AFF		PRESSUR	STURE, B	-	H		9	S	u,	1	7	1	+	5	۷.		-	14	Н	H	+	+	+	-	+	+	\mathbb{H}	+	+	+
CLIENT AGENTS	SOURCE ENOUGH SECULI	METER /	ATOP:	CONTROL UNIT (AE 3099		METRIC	MED MOI	Clock Time	Point	1259													11403											

Pitot Tube Calibration

 Date:
 15-Jul-19
 Temp (R): 530

 Pbar (in.Hg):
 29.50
 Dn (in.):
 0.25

Pitot ID:	4A-1			
Reference	S-Type	Air	Pitot	Deviation
HT-4A	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.225	0.315	31.6	0.8367	0.0120
0.335	0.465	38.6	0.8403	0.0156
0.490	0.685	46.7	0.8373	0.0126
0.660	0.950	54.2	0.8252	0.0005
0.690	1.100	55.4	0.7841	0.0406
		Average:	0.8247	0.0163

Pitot ID:	HT-4A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.070	14.9	0.8367	0.0042
0.145	0.200	25.4	0.8430	0.0020
0.510	0.700	47.6	0.8450	0.0041
0.790	1.100	59.3	0.8390	0.0019
,		Average :	0.8409	0.0031

Pitot ID:	4A-2			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.150	0.200	25.8	0.8574	0.0100
0.345	0.475	39.2	0.8437	0.0036
0.410	0.565	42.7	0.8433	0.0040
0.575	0.770	50.6	0.8555	0.0082
0.750	1.050	57.7	0.8367	0.0106
		Average:	0.8473	0.0073

Pitot ID:	HT-4B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.065	0.090	17.0	0.8413	0.0049
0.145	0.200	25.4	0.8430	0.0033
0.340	0.460	38.9	0.8511	0.0049
0.670	0.910	54.6	0.8495	0.0033
		Average:	0.8462	0.0041

Pitot ID:	4A-3			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.240	0.335	32.7	0.8380	0.0006
0.360	0.495	40.0	0.8443	0.0070
0.455	0.645	45.0	0.8315	0.0058
0.660	0.905	54.2	0.8454	0.0081
0.695	0.995	55.6	0.8274	0.0099
		Average:	0.8373	0.0063

Pitot ID:	HT-4C			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.065	0.090	17.0	0.8413	0.0022
0.170	0.240	27.5	0.8332	0.0103
0.420	0.570	43.2	0.8498	0.0063
0.700	0.950	55.8	0.8498	0.0063
•	•	Average:	0.8435	0.0063

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		Average:	#DIV/0!	#DIV/0!

Pitot ID:	HT-4D			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.050	0.070	14.9	0.8367	0.0031
0.270	0.370	34.6	0.8457	0.0059
0.540	0.740	49.0	0.8457	0.0059
0.740	1.050	57.4	0.8311	0.0087
		Average:	0.8398	0.0059

Calibrated by: Jeremy Gibbs

Signature:

Date:

July 15, 2019

^{*} Average absolute deviation must not exceed 0.01.

	E	BAROMETER	R CALIBRATION	FORM		
		Pbar E	nv Canada	Device (inc	hes of Hg)	Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	January 17, 2019	99.9	29.51	29.43	29.50	0.00
DS	July 8, 2019	102.1	30.16	30.03	30.10	0.05
CL	July 8, 2019	102.1	30.16	30.04	30.11	0.04
ML	July 8, 2019	102.1	30.16	30.01	30.08	0.07
SB	January 17, 2019	99.9	29.51	29.43	29.50	0.00
SH	January 17, 2019	99.9	29.51	29.40	29.47	0.03
MG	January 7, 2019	101.2	29.89	29.80	29.87	0.02
JB	January 17, 2019	99.9	29.51	29.42	29.49	0.01
SF	July 8, 2019	102.1	30.16	30.07	30.14	0.01
JG	January 17, 2019	99.9	29.51	29.4	29.47	0.03

Calibrated by:

Daryl Sampson

Signature: __

Date:

July 8, 2019

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

http://www.weatheroffice.gc.ca/city/pages/bc-74 metric e.html

A.Lanfranco & Associates inc.

EPA Method 5 Mater Box Calibration English Meter Box Units, English K Factor

Model #: CAE JO99 Barametric Pressure: 29.80 (in. Hg) Serial #: 0028-022210-1 Theoretical Critical Vacuum: 14.06 (in, Hg)

MPORTANT For waid text results, the Actual Vacuum should be 1 to 2 in. Hig greater than the Theoretical Officel Vacuum shows above.

MPORTANT The Officel Office Coefficient, Kr. must be entered in English units, (II/191/deg R)10.5((in. hig)/mini).

		-	DRY GA	S METER READIN	igs	-				-01	RITICAL ORIFI	CE READING	8-	
dH (in H2O) 3.55	Time (min) 35.00	Volume initial (cu ft) 753,705	Volume Final (cu ft) 791.250	Volume Total (cu ft) 37.545	Initial T Inlet (deg F) 71.0	Cuffet (deg F)	Finel inlet (deg F) 74.0	Temps. Outlet (deg F) 74.0	Orifice Serial# (number) 73	K Crifice Coefficient (see above) 0.8185	Actual Vacuum (in Hg)	- Amb Initial (deg F) 81.0	Pinal Final (dag F) 81.0	are – Averag (deg F 81.0
1.90	19.00	791,500	806.325	14.825	74.0	74.0	75.0	75.0	63	0.5958	18.5	82.0	82.0	82.0
1.15	16.00	808,500	816.205	9.705	75.0	75.0	76.0	76.0	55	0.4606	20.0	82.0	82.0	82.0
0.66	17.00	816,500	824.345	7.845	78.0	76.0	76.0	76.0	48	0.3560	21.5	86.0	89.0	87.5
0.31	16.00	824,800	829.837	5.037	78.0	76.0	77.0	77.0	40	0.2406	22.5	86.0	90.0	88.0
- DRY GAS	, merek —		_	ORIFICE	-		- DRY GAS	- ME 15K -				- ORIFICE		
VOLUME RRECTED	CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	Y		CAL	JBRATION FA	CTOR		
							CALIBRATION Value (number)	ON FACTOR Y Variation (number)		Value (in H2O)		Verision (in H2O)		Ko (valu
RRECTED Vm(skl) (ou ft)	CORRECTED Vm(skl)		CORRECTED Vcr(skl)	CORRECTED Vcr(skt)	NOMINAL Vor		Value	Y Variation		Value	dH Q Value	Veristion		
RRECTED Vm(skl) (ou ft) 37.388 14.648	CORRECTED Vin(skf) (liters) 1058.8 414.8		CORRECTED Vor(skf) (cu ft) 36.703 14.485	CORRECTED Vor(skt) (Bers) 1039.4 410.2	NOMINAL Ver (cu ft) 37.773 14.935		Value (number)	Variation (number) -0.009 -0.001		Value (in H2O) 1.793 1.809	dHg Value (mm H2O) 45.55 45.95	Variation (in H2O) -0.011 0.005		(val. 0.72 0.71
RRECTED Vin(skl) (ou ft) 37.388 14.648 9.554	CORRECTED Vm(skl) (Blens) 1058.8 414.8 270.6		CORRECTED Vcr(skl) (cu ft) 36.703 14.485 9.433	CORRECTED Vcr(std) (Bers) 1039.4 410.2 267.1	NOMINAL Vor (cu ft) 37.773 14.935 9.726		Value (number) 0.9817 0.9889 0.9874	V Variation (number) -0.009 -0.001 -0.003		Value (in H2O) 1.793 1.809 1.828	dHg Value (mm H2O) 45.95 45.95	Variation (in H2O) -0.011 0.005 0.023		0.72 0.71 0.71
RRECTED (m(skl) (cu ft) 37.388 14.648	CORRECTED Vin(skf) (liters) 1058.8 414.8		CORRECTED Vor(skf) (cu ft) 36.703 14.485	CORRECTED Vor(skt) (Bers) 1039.4 410.2	NOMINAL Ver (cu ft) 37.773 14.935		Value (number) 0.9817 0.9889	Variation (number) -0.009 -0.001		Value (in H2O) 1.793 1.809	dHg Value (mm H2O) 45.55 45.95	Variation (in H2O) -0.011 0.005		0.72 0.71

TEMPERATURE CALIBRATION									
Calibration Standard>	Omega Model CL23A SANT-2	18768							
Reference Temperature	Temperature Device		sults						
Set-Point (deg F)	Reading (deg F)	Variation (degF)	Percent of Absolute						
32	32	0	0.00%						
100	100	0	0.00%						
300	300	0	0.00%						
500	500	0	0.00%						
1000	1000	0	0.00%						

Note: For Californium Factor Y, the notice of the canding of the californium mater to the day gas make, exceptable interaction of ind Advantages on the energie is +0.02.
For Orbita Californium deligible that and deligible the individual produces of the californium delicity in the californium delicity is an emphasized of the californium delicity in the californium delicity is an emphasized of the californium delicity in the californium delicity is an emphasized of the californium delicity in the californium delicity is an emphasized of the californium delicity deli

Calibrated by: Scott Ferguson

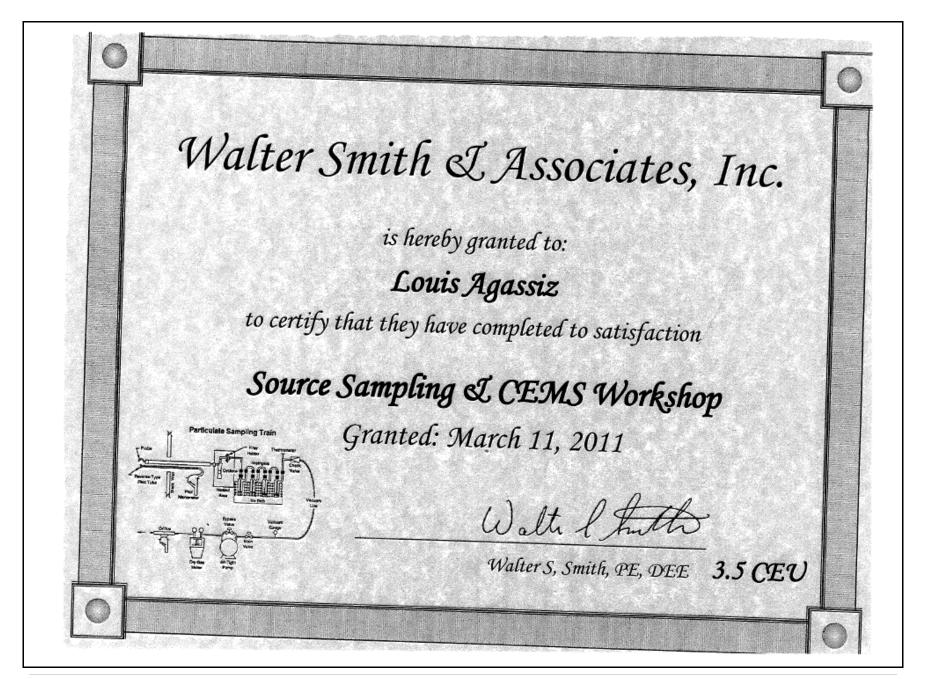
A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

NOZZLE DIAMETER CALIBRATION FORM
Calibrated by: Justin Ching
Date: July 3, 2019

Zauj Ocio

Signature:


Nozzle I.D.	d1	d2	d3	difference	average dia.	average area	
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)	
ST01				0.0000	#DIV/0!	#DIV/0!	
SS-1	0.1722	0.1718	0.1706	0.0016	0.1715	0.0001608	
ST05	0.1723	0.1730	0.1739	0.0016	0.1731	0.0001634	
SS-7	0.1803	0.1798	0.1805	0.0007	0.1802	0.000177	
SS-8	0.1958	0.1983	0.1980	0.0025	0.1974	0.000212	
ST11	0.2058	0.2061	0.2060	0.0003	0.2060	0.0002314	
ST10	0.2152	0.2181	0.2145	0.0036	0.2159	0.000254	
SS-18	0.2341	0.2345	0.2355	0.0014	0.2347	0.000300	
ST15	0.2362	0.2372	0.2392	0.0030	0.2375	0.000307	
SS-2	0.2438	0.2440	0.2441	0.0003	0.2440	0.000324	
SS-3	0.2431	0.2435	0.2450	0.0019	0.2439	0.000324	
SS-24	0.2490	0.2455	0.2469	0.0035	0.2471	0.000333	
ST30	0.2470	0.2461	0.2489	0.0028	0.2473	0.000333	
В	0.2466	0.2498	0.2502	0.0036	0.2489	0.000337	
SS-14	0.2498	0.2507	0.2519	0.0021	0.2508	0.000343	
ST20	0.2559	0.2530	0.2521	0.0038	0.2537	0.000351	
SS-9	0.2721	0.2689	0.2710	0.0032	0.2707	0.000399	
A	0.2603	0.2618	0.2592	0.0026	0.2604	0.000369	
ST40	0.2855	0.2846	0.2850	0.0009	0.2850	0.000443	
SS-13	0.2972	0.2986	0.2994	0.0022	0.2984	0.000485	
SS-30	0.3022	0.3023	0.3023	0.0001	0.3023	0.000498	
ST50	0.3032	0.3022	0.3049	0.0027	0.3034	0.000502	
ST60	0.3068	0.3052	0.3063	0.0016	0.3061	0.000511	
SS-10	0.3163	0.3172	0.3168	0.0009	0.3168	0.000547	
ST65	0.3251	0.3272	0.3279	0.0028	0.3267	0.000582	
ST66	0.3371	0.3362	0.3380	0.0018	0.3371	0.000619	
ST80	0.3578	0.3607	0.3593	0.0029	0.3593	0.000704	
SS-5	0.3672	0.3711	0.3705	0.0039	0.3696	0.000745	
ST75	0.3692	0.3679	0.3690	0.0013	0.3687	0.000741	
ST76	0.3732	0.3732	0.3721	0.0011	0.3728	0.000758	
SS-16	0.3735	0.3774	0.3755	0.0039	0.3755	0.000768	
ST85	0.4029	0.4036	0.4015	0.0021	0.4027	0.000884	
SS-15	0.1020	0.1000	0.1010	0.0000	#DIV/0!	#DIV/0!	
DD	0.4049	0.4058	0.4088	0.0039	0.4065	0.000901	
SS-11	0.4211	0.4220	0.4185	0.0035	0.4205	0.000964	
ST70	0.4232	0.4242	0.4230	0.0012	0.4235	0.000978	
ST86	0.4252	0.4242	0.4200	0.0012	#DIV/0I	#DIV/0I	
C	0.4917	0.4888	0.4908	0.0029	0.4904	0.001311	
SS-49	0.4017	5.4500	5.4500	0.0023	#DIV/0I	#DIV/0!	
SS-6	0.4944	0.4962	0.4946	0.0018	0.4951	0.001336	
ST90	0.4982	0.5012	0.4995	0.0030	0.4996	0.001361	
ST92	0.5085	0.5062	0.5071	0.0030	0.5073	0.001301	
ST96	0.5000	0.3002	0.3071	0.0023	#DIV/0I	#DIV/0!	
SS-12	0.7488	0.7507	0.7478	0.0029	0.7491	0.003060	
00-12	0.7400	0.7507	0.1410	0.0029	0.7491	0.003000	

Where:

D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

2019 Annual Report for Authorization 8808 - Atlantic Power - Williams Lake Power Plant
Appendix B - Ash Analysis Report

Your P.O. #: CREDIT CARD (PHONE C Your Project #: ANNUAL ASH SAMPLE

Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your C.O.C. #: 08473283

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2019/11/18 Report #: R2812043 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B980737 Received: 2019/09/24, 08:15

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Metals - TCLP	1	2019/09/27	2019/09/27	BBY7SOP-00005 / BBY7SOP-00001	EPA 1311, 6020bR2 m
Moisture	1	2019/09/25	2019/09/26	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Non Routine/Non Validated Matrix Tested (1, 3)	1	N/A	2019/09/25		
PAH in Soil by GC/MS (SIM)	1	2019/09/25	2019/09/26	BBY8SOP-00022	BCMOE BCLM Jul2017m
PAH TEQ Calculation, BC Reg. 132/92 (4)	1	N/A	2019/09/27	BBY WI-00033	Auto Calc
Total PAH and B(a)P Calculation (5)	1	N/A	2019/09/27	BBY WI-00033	Auto Calc
TCLP pH Measurements	1	N/A	2019/09/27	BBY7SOP-00005	EPA 1311
Dioxins/Furans in Soil (EPS 1/RM/23) (2, 6)	1	2019/10/16	2019/11/08	BRL SOP-00406 (mod)	EPS 1/RM/23 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Courtenay
- (2) This test was performed by BV Labs Ontario (From Burnaby)
- (3) Sample(s) analyzed using methodologies that have not been subjected to Bureau Veritas Laboratories' standard validation process for the submitted matrix and is not an accredited method. Analysis performed with client consent, however results should be viewed with discretion.

Page 1 of 19

Your P.O. #: CREDIT CARD (PHONE C Your Project #: ANNUAL ASH SAMPLE

Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your C.O.C. #: 08473283

Attention: Jacob Steyl

ATLANTIC POWER (WILLIAMS LAKE) LTD.
4465 MACKENZIE AVENUE NORTH
WILLIAMS LAKE, BC
CANADA V2G 5E8

Report Date: 2019/11/18 Report #: R2812043 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B980737

Received: 2019/09/24, 08:15

(4) PAH TEQ = 0.1*benzo(a)anthracene + 1.0*benzo(a)pyrene + 0.1*benzo(b)fluoranthene + 0.1*benzo(k)fluoranthene + 1.1*dibenzo(a,h)anthracene + 0.2*indeno(1,2,3-cd)pyrene (5) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Anthracene, Anthracene, Phenanthrene, Phenanth

Total PAHs in Sediment include (B.C. Reg. 116/2018, Schedule 3.4): Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthylene, Fluorene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

(6) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

Encryption Key

Melissa McIntosh Project Manager

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Customer Solutions, Western Canada Customer Experience Team

Email: customersolutionswest@bvlabs.com

Phone# (604) 734 7276

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

RESULTS OF CHEMICAL ANALYSES OF SOIL

BV Labs ID		WO2208	
Sampling Date		2019/09/19	
Sampling Date		14:00	
COC Number		08473283	
		GLASS JARS	
	UNITS	(CLEAR) FILLED	QC Batch
		WITH ASH	
MISCELLANEOUS			
Sample Matrix	N/A	ASH	ONSITE

Page 3 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

PHYSICAL TESTING (SOIL)

BV Labs ID		WO2208		
Samuelina Data		2019/09/19		
Sampling Date		14:00		
COC Number		08473283		
	UNITS	GLASS JARS (CLEAR) FILLED WITH ASH	RDL	QC Batch
Physical Properties				
Moisture	%	<0.30	0.30	9602590

Page 4 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

BV Labs ID		WO2208		
Sampling Date		2019/09/19 14:00		
COC Number		08473283		
	UNITS	GLASS JARS (CLEAR) FILLED WITH ASH	RDL	QC Batch
Calculated Parameters				
PAH Toxicity Equivalency	mg/kg	0.026	0.020	9601330
RDL = Reportable Detection L	imit			

Page 5 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C

Sampler Initials: AF

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		WO2208	
Sampling Date		2019/09/19 14:00	
COC Number		08473283	
	UNITS	GLASS JARS (CLEAR) FILLED WITH ASH	QC Batch
TCLP Extraction Procedure		•	•
TCLP Extraction Procedure Initial pH of Sample	рН	12.2	9605581
		12.2 10.4	9605581 9605581
Initial pH of Sample	рН		

Page 6 of 19

Report Date: 2019/11/18

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

DIOXIN AND FURANS BY HRMS (SOIL)

BV Labs ID		WO2208						
Sampling Date		2019/09/19						
Jamping Date		14:00						
COC Number		08473283			TOXIC EQU	IIVALENCY	# of	
	UNITS	GLASS JARS (CLEAR) FILLED WITH ASH	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
DIOXINS								
1,2,3,4,6,7,8-Hepta CDD *	pg/g	10.1	0.582	4.93	0.0100	0.101		9669763
1,2,3,4,7,8-Hexa CDD *	pg/g	5.61	0.585	4.93	0.100	0.561		9669763
1,2,3,6,7,8-Hexa CDD *	pg/g	5.24	0.519	4.93	0.100	0.524		9669763
1,2,3,7,8,9-Hexa CDD *	pg/g	4.97	0.538	4.93	0.100	0.497		9669763
1,2,3,7,8-Penta CDD *	pg/g	12.3	0.525	4.93	1.00	12.3		9669763
2,3,7,8-Tetra CDD *	pg/g	11.9	0.547	4.93	1.00	11.9		9669763
Octa CDD *	pg/g	9.49	0.566	49.3	0.000300	0.00285		9669763
Total Hepta CDD *	pg/g	16.6	0.582	4.93			2	9669763
Total Hexa CDD *	pg/g	60.2	0.546	4.93			7	9669763
Total Penta CDD *	pg/g	127	0.525	4.93			12	9669763
Total Tetra CDD *	pg/g	248	0.547	4.93			16	9669763
FURANS								
1,2,3,4,6,7,8-Hepta CDF **	pg/g	6.11	0.531	4.93	0.0100	0.0611		9669763
1,2,3,4,7,8,9-Hepta CDF **	pg/g	1.56	0.597	4.93	0.0100	0.0156		9669763
1,2,3,4,7,8-Hexa CDF **	pg/g	16.5	0.530	4.93	0.100	1.65		9669763
1,2,3,6,7,8-Hexa CDF **	pg/g	11.7	0.462	4.93	0.100	1.17		9669763
1,2,3,7,8,9-Hexa CDF **	pg/g	1.76	0.553	4.93	0.100	0.176		9669763
1,2,3,7,8-Penta CDF **	pg/g	32.2	1.07	4.93	0.0300	0.966		9669763
2,3,4,6,7,8-Hexa CDF **	pg/g	8.54	0.526	4.93	0.100	0.854		9669763
2,3,4,7,8-Penta CDF **	pg/g	51.3	0.995	4.93	0.300	15.4		9669763
2,3,7,8-Tetra CDF **	pg/g	201	0.559	4.93	0.100	20.1		9669763

EDL = Estimated Detection Limit

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Page 7 of 19

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

^{*} CDD = Chloro Dibenzo-p-Dioxin

^{**} CDF = Chloro Dibenzo-p-Furan

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

DIOXIN AND FURANS BY HRMS (SOIL)

BV Labs ID		WO2208						
Sampling Date		2019/09/19 14:00						
COC Number		08473283			TOXIC EQU	JIVALENCY	# of	
	UNITS	GLASS JARS (CLEAR) FILLED WITH ASH	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Octa CDF **	pg/g	2.36	0.537	49.3	0.000300	0.000708		9669763
Total Hepta CDF **	pg/g	13.0	0.562	4.93			4	9669763
Total Hexa CDF **	pg/g	109	0.516	4.93			13	9669763
Total Penta CDF **	pg/g	425	1.03	4.93			15	9669763
Total Tetra CDF **	pg/g	1190	0.559	4.93			19	9669763
TOTAL TOXIC EQUIVALENCY	pg/g					66.3		
Surrogate Recovery (%)							•	
C13-1234678 HeptaCDD *	%	96						9669763
C13-1234678 HeptaCDF **	%	75						9669763
C13-123678 HexaCDD *	%	99						9669763
C13-123678 HexaCDF **	%	79						9669763
C13-12378 PentaCDD *	%	99						9669763
C13-12378 PentaCDF **	%	89						9669763
C13-2378 TetraCDD *	%	79						9669763
C13-2378 TetraCDF **	%	78						9669763
C13-OCDD *	%	89						9669763

EDL = Estimated Detection Limit

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

^{**} CDF = Chloro Dibenzo-p-Furan

^{*} CDD = Chloro Dibenzo-p-Dioxin

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

TCLP METALS (SOIL)

<u> </u>		LIALS (SOIL)		
BV Labs ID		WO2208		
Sampling Date		2019/09/19		
Sampling Date		14:00		
COC Number		08473283		
		GLASS JARS		
	UNITS	(CLEAR) FILLED	RDL	QC Batch
		WITH ASH		
TCLP Extraction Procedure				
Leachate Antimony (Sb)	mg/L	<0.10	0.10	9606591
Leachate Arsenic (As)	mg/L	<0.10	0.10	9606591
Leachate Barium (Ba)	mg/L	1.45	0.10	9606591
Leachate Beryllium (Be)	mg/L	<0.10	0.10	9606591
Leachate Boron (B)	mg/L	2.62	0.10	9606591
Leachate Cadmium (Cd)	mg/L	<0.10	0.10	9606591
Leachate Chromium (Cr)	mg/L	<0.10	0.10	9606591
Leachate Cobalt (Co)	mg/L	<0.10	0.10	9606591
Leachate Copper (Cu)	mg/L	<0.10	0.10	9606591
Leachate Iron (Fe)	mg/L	<0.50	0.50	9606591
Leachate Lead (Pb)	mg/L	<0.10	0.10	9606591
Leachate Mercury (Hg)	mg/L	<0.0020	0.0020	9606591
Leachate Molybdenum (Mo)	mg/L	0.21	0.10	9606591
Leachate Nickel (Ni)	mg/L	<0.10	0.10	9606591
Leachate Selenium (Se)	mg/L	<0.10	0.10	9606591
Leachate Silver (Ag)	mg/L	<0.010	0.010	9606591
Leachate Thallium (TI)	mg/L	<0.10	0.10	9606591
Leachate Uranium (U)	mg/L	<0.10	0.10	9606591
Leachate Vanadium (V)	mg/L	<0.10	0.10	9606591
Leachate Zinc (Zn)	mg/L	<0.10	0.10	9606591
Leachate Zirconium (Zr)	mg/L	<0.10	0.10	9606591
RDL = Reportable Detection Li	imit			
_				

Page 9 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD. Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your P.O. #: CREDIT CARD (PHONE C Sampler Initials: AF

CSR PAH IN SOIL BY GC-MS (SOIL)

BV Labs ID		WO2208		
Sampling Date		2019/09/19		
		14:00		
COC Number		08473283		
		GLASS JARS		
	UNITS	(CLEAR) FILLED	RDL	QC Batch
		WITH ASH		
Calculated Parameters				
Low Molecular Weight PAH`s	mg/kg	<0.050	0.050	9600523
High Molecular Weight PAH`s	mg/kg	<0.050	0.050	9600523
Total PAH	mg/kg	<0.050	0.050	9600523
Polycyclic Aromatics				
Naphthalene	mg/kg	<0.010	0.010	9603442
1-Methylnaphthalene	mg/kg	<0.050	0.050	9603442
2-Methylnaphthalene	mg/kg	<0.020	0.020	9603442
Acenaphthylene	mg/kg	<0.0050	0.0050	9603442
Acenaphthene	mg/kg	<0.0050	0.0050	9603442
Fluorene	mg/kg	<0.020	0.020	9603442
Phenanthrene	mg/kg	<0.010	0.010	9603442
Anthracene	mg/kg	<0.0040	0.0040	9603442
Fluoranthene	mg/kg	<0.020	0.020	9603442
Pyrene	mg/kg	<0.020	0.020	9603442
Benzo(a)anthracene	mg/kg	<0.020	0.020	9603442
Chrysene	mg/kg	<0.020	0.020	9603442
Benzo(b&j)fluoranthene	mg/kg	<0.020	0.020	9603442
Benzo(b)fluoranthene	mg/kg	<0.020	0.020	9603442
Benzo(k)fluoranthene	mg/kg	<0.020	0.020	9603442
Benzo(a)pyrene	mg/kg	<0.020	0.020	9603442
Indeno(1,2,3-cd)pyrene	mg/kg	<0.020	0.020	9603442
Dibenz(a,h)anthracene	mg/kg	<0.020	0.020	9603442
Benzo(g,h,i)perylene	mg/kg	<0.050	0.050	9603442
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	0.30 (1)		9603442
D8-ACENAPHTHYLENE (sur.)	%	0.10 (1)		9603442
D8-NAPHTHALENE (sur.)	%	0.40 (1)		9603442
RDL = Reportable Detection Lir		51.15 (2)		1000 142

RDL = Reportable Detection Limit

(1) Surrogate recovery below acceptance criteria due to matrix interference.

Page 10 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

CSR PAH IN SOIL BY GC-MS (SOIL)

BV Labs ID		WO2208		
Sampling Date		2019/09/19 14:00		
COC Number		08473283		
	UNITS	GLASS JARS (CLEAR) FILLED WITH ASH	RDL	QC Batch
TERPHENYL-D14 (sur.)	%	0.10(1)		9603442

RDL = Reportable Detection Limit

Page 11 of 19

⁽¹⁾ Surrogate recovery below acceptance criteria due to matrix interference.

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

GENERAL COMMENTS

Sample WO2208 [GLASS JARS (CLEAR) FILLED WITH ASH]: Non-routine matrix analyzed with client consent for PAH on batch: 9603442. Please refer to BBY PDF-00149.

Results relate only to the items tested.

Page 12 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.

Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your P.O. #: CREDIT CARD (PHONE C

Sampler Initials: AF

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9602590	L01	Method Blank	Moisture	2019/09/26	<0.30		%	
602590	LO1	RPD	Moisture	2019/09/26	4.3		%	20
603442	JP1	Spiked Blank	D10-ANTHRACENE (sur.)	2019/09/26		83	%	50 - 140
			D8-ACENAPHTHYLENE (sur.)	2019/09/26		81	%	50 - 14
			D8-NAPHTHALENE (sur.)	2019/09/26		83	%	50 - 14
			TERPHENYL-D14 (sur.)	2019/09/26		88	%	50 - 140
			Naphthalene	2019/09/26		89	%	50 - 14
			1-Methylnaphthalene	2019/09/26		86	%	50 - 140
			2-Methylnaphthalene	2019/09/26		86	%	50 - 14
			Acenaphthylene	2019/09/26		89	%	50 - 14
			Acenaphthene	2019/09/26		86	%	50 - 14
			Fluorene	2019/09/26		82	%	50 - 14
			Phenanthrene	2019/09/26		85	%	50 - 14
			Anthracene	2019/09/26		86	%	50 - 14
			Fluoranthene	2019/09/26		91	% %	50 - 14
						91	% %	50 - 14
			Pyrene	2019/09/26				
			Benzo(a) anthracene	2019/09/26		81	%	50 - 14
			Chrysene	2019/09/26		84	%	50 - 14
			Benzo(b&j)fluoranthene	2019/09/26		87	%	50 - 14
			Benzo(b)fluoranthene	2019/09/26		88	%	50 - 14
			Benzo(k)fluoranthene	2019/09/26		87	%	50 - 14
			Benzo(a)pyrene	2019/09/26		89	%	50 - 14
			Indeno(1,2,3-cd)pyrene	2019/09/26		96	%	50 - 14
			Dibenz(a,h)anthracene	2019/09/26		99	%	50 - 14
			Benzo(g,h,i)perylene	2019/09/26		94	%	50 - 14
603442	JP1	Method Blank	D10-ANTHRACENE (sur.)	2019/09/26		81	%	50 - 14
			D8-ACENAPHTHYLENE (sur.)	2019/09/26		80	%	50 - 140
			D8-NAPHTHALENE (sur.)	2019/09/26		83	%	50 - 14
			TERPHENYL-D14 (sur.)	2019/09/26		88	%	50 - 14
			Naphthalene	2019/09/26	< 0.010		mg/kg	
			1-Methylnaphthalene	2019/09/26	< 0.050		mg/kg	
			2-Methylnaphthalene	2019/09/26	< 0.020		mg/kg	
			Acenaphthylene	2019/09/26	< 0.0050		mg/kg	
			Acenaphthene	2019/09/26	< 0.0050		mg/kg	
			Fluorene	2019/09/26	< 0.020		mg/kg	
			Phenanthrene	2019/09/26	< 0.010		mg/kg	
			Anthracene	2019/09/26	<0.0040		mg/kg	
			Fluoranthene	2019/09/26	< 0.020		mg/kg	
			Pyrene	2019/09/26	< 0.020		mg/kg	
			Benzo(a)anthracene	2019/09/26	<0.020		mg/kg	
			Chrysene	2019/09/26	<0.020		mg/kg	
			Benzo(b&j)fluoranthene	2019/09/26	<0.020		mg/kg	
			Benzo(b);fluoranthene		<0.020		mg/kg	
			Benzo(k)fluoranthene Benzo(k)fluoranthene	2019/09/26	<0.020			
				2019/09/26			mg/kg	
			Benzo(a)pyrene	2019/09/26	<0.020		mg/kg	
			Indeno(1,2,3-cd)pyrene	2019/09/26	<0.020		mg/kg	
			Dibenz(a,h)anthracene	2019/09/26	<0.020		mg/kg	
			Benzo(g,h,i)perylene	2019/09/26	<0.050		mg/kg	
605581	AP8	Method Blank	Initial pH of Sample	2019/09/27	4.96		pН	
			Final pH of Leachate	2019/09/27	4.93		pН	
			pH of Leaching Fluid	2019/09/27	4.96		pН	
505581	AP8	RPD	Initial pH of Sample	2019/09/27	2.7		%	N/A

Page 13 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.

Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your P.O. #: CREDIT CARD (PHONE C

Sampler Initials: AF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Final pH of Leachate	2019/09/27	0.36	,	%	N/A
			pH of Leaching Fluid	2019/09/27	0		%	N/A
9606591	GS9	Matrix Spike	Leachate Antimony (Sb)	2019/09/27		106	%	75 - 125
		[WO2208-01]						
			Leachate Arsenic (As)	2019/09/27		106	%	75 - 125
			Leachate Barium (Ba)	2019/09/27		99	%	75 - 125
			Leachate Beryllium (Be)	2019/09/27		102	%	75 - 125
			Leachate Boron (B)	2019/09/27		105	%	75 - 125
			Leachate Cadmium (Cd)	2019/09/27		103	%	75 - 125
			Leachate Chromium (Cr)	2019/09/27		104	%	75 - 125
			Leachate Cobalt (Co)	2019/09/27		100	%	75 - 125
			Leachate Copper (Cu)	2019/09/27		102	%	75 - 125
			Leachate Iron (Fe)	2019/09/27		104	%	75 - 125
			Leachate Lead (Pb)	2019/09/27		102	%	75 - 125
			Leachate Mercury (Hg)	2019/09/27		103	%	75 - 125
			Leachate Molybdenum (Mo)	2019/09/27		105	%	75 - 125
			Leachate Nickel (Ni)	2019/09/27		99	%	75 - 125
			Leachate Selenium (Se)	2019/09/27		103	%	75 - 125
			Leachate Silver (Ag)	2019/09/27		100	%	75 - 125
			Leachate Thallium (TI)	2019/09/27		97	%	75 - 125
			Leachate Uranium (U)	2019/09/27		104	%	75 - 125
			Leachate Vanadium (V)	2019/09/27		105	%	75 - 125
			Leachate Zinc (Zn)	2019/09/27		100	%	75 - 125
			Leachate Zirconium (Zr)	2019/09/27		106	%	75 - 125
9606591	GS9	Spiked Blank	Leachate Antimony (Sb)	2019/09/27		106	%	75 - 125
			Leachate Arsenic (As)	2019/09/27		107	%	75 - 125
			Leachate Barium (Ba)	2019/09/27		102	%	75 - 125
			Leachate Beryllium (Be)	2019/09/27		103	%	75 - 125
			Leachate Boron (B)	2019/09/27		103	%	75 - 125
			Leachate Cadmium (Cd)	2019/09/27		106	%	75 - 125
			Leachate Chromium (Cr)	2019/09/27		106	%	75 - 125
			Leachate Cobalt (Co)	2019/09/27		102	%	75 - 125
			Leachate Copper (Cu)	2019/09/27		106	%	75 - 125
			Leachate Iron (Fe)	2019/09/27		108	%	75 - 125
			Leachate Lead (Pb)	2019/09/27		105	%	75 - 125
			Leachate Mercury (Hg)	2019/09/27		106	%	75 - 125
			Leachate Molybdenum (Mo)	2019/09/27		103	%	75 - 125
			Leachate Nickel (Ni)	2019/09/27		105	%	75 - 125
			Leachate Selenium (Se)	2019/09/27		105	%	75 - 125
			Leachate Silver (Ag)	2019/09/27		104	%	75 - 125
			Leachate Thallium (TI)	2019/09/27		101	%	75 - 125
			Leachate Uranium (U)	2019/09/27		107	%	75 - 125
			Leachate Vanadium (V)	2019/09/27		107	%	75 - 125
			Leachate Zinc (Zn)	2019/09/27		105	%	75 - 125
			Leachate Ziric (Zir)	2019/09/27		107	%	75 - 125
9606591	GS9	Method Blank	Leachate Antimony (Sb)	2019/09/27	<0.10		mg/L	
		corou plunk	Leachate Aritimony (35)	2019/09/27	<0.10		mg/L	
			Leachate Barium (Ba)	2019/09/27	<0.10		mg/L	
			Leachate Beryllium (Be)	2019/09/27	<0.10		mg/L	
			Leachate Boron (B)	2019/09/27	<0.10		mg/L	
			Leachate Boron (b)		<0.10		mg/L	
				2019/09/27			-	
			Leachate Chromium (Cr)	2019/09/27	<0.10		mg/L	

Page 14 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.

Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your P.O. #: CREDIT CARD (PHONE C

Sampler Initials: AF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachate Cobalt (Co)	2019/09/27	<0.10		mg/L	
			Leachate Copper (Cu)	2019/09/27	<0.10		mg/L	
			Leachate Iron (Fe)	2019/09/27	<0.50		mg/L	
			Leachate Lead (Pb)	2019/09/27	<0.10		mg/L	
			Leachate Mercury (Hg)	2019/09/27	<0.0020		mg/L	
			Leachate Molybdenum (Mo)	2019/09/27	<0.10		mg/L	
			Leachate Nickel (Ni)	2019/09/27	<0.10		mg/L	
			Leachate Selenium (Se)	2019/09/27	<0.10		mg/L	
			Leachate Silver (Ag)	2019/09/27	<0.010		mg/L	
			Leachate Thallium (TI)	2019/09/27	<0.10		mg/L	
			Leachate Uranium (U)	2019/09/27	< 0.10		mg/L	
			Leachate Vanadium (V)	2019/09/27	< 0.10		mg/L	
			Leachate Zinc (Zn)	2019/09/27	< 0.10		mg/L	
			Leachate Zirconium (Zr)	2019/09/27	< 0.10		mg/L	
9669763	AGU	Matrix Spike [WO2208-02]	C13-1234678 HeptaCDD	2019/11/08		76	%	30 - 130
			C13-1234678 HeptaCDF	2019/11/08		61	%	30 - 130
			C13-123678 HexaCDD	2019/11/08		78	%	30 - 130
			C13-123678 HexaCDF	2019/11/08		65	%	30 - 130
			C13-12378 PentaCDD	2019/11/08		100	%	30 - 130
			C13-12378 PentaCDF	2019/11/08		89	%	30 - 130
			C13-2378 TetraCDD	2019/11/08		75	%	30 - 130
			C13-2378 TetraCDF	2019/11/08		74	%	30 - 130
			C13-OCDD			74		
				2019/11/08			%	30 - 130
			1,2,3,4,6,7,8-Hepta CDD	2019/11/08		95 102	% %	80 - 140
			1,2,3,4,7,8-Hexa CDD	2019/11/08				80 - 140
			1,2,3,6,7,8-Hexa CDD	2019/11/08		91	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2019/11/08		91	%	80 - 140
			1,2,3,7,8-Penta CDD	2019/11/08		92	%	80 - 140
			2,3,7,8-Tetra CDD	2019/11/08		92	%	80 - 140
			Octa CDD	2019/11/08		89	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2019/11/08		98	%	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2019/11/08		127	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2019/11/08		104	%	80 - 140
			1,2,3,6,7,8-Hexa CDF	2019/11/08		92	%	80 - 140
			1,2,3,7,8,9-Hexa CDF	2019/11/08		103	%	80 - 140
			1,2,3,7,8-Penta CDF	2019/11/08		97	%	80 - 140
			2,3,4,6,7,8-Hexa CDF	2019/11/08		101	%	80 - 140
			2,3,4,7,8-Penta CDF	2019/11/08		105	%	80 - 140
			2,3,7,8-Tetra CDF	2019/11/08		103	%	80 - 140
			Octa CDF	2019/11/08		93	%	80 - 140
9669763	AGU	Spiked Blank	C13-1234678 HeptaCDD	2019/11/08		63	%	30 - 130
			C13-1234678 HeptaCDF	2019/11/08		58	%	30 - 130
			C13-123678 HexaCDD	2019/11/08		75	%	30 - 130
			C13-123678 HexaCDF	2019/11/08		58	%	30 - 130
			C13-12378 PentaCDD	2019/11/08		85	%	30 - 130
			C13-12378 PentaCDF	2019/11/08		77	%	30 - 130
			C13-2378 FetraCDD	2019/11/08		67	%	30 - 130
			C13-2378 TetraCDF	2019/11/08		69	% %	30 - 130
			C13-OCDD	2019/11/08		63	%	30 - 130
			1,2,3,4,6,7,8-Hepta CDD	2019/11/08		100	%	80 - 140
			1,2,3,4,7,8-Hexa CDD	2019/11/08		96	%	80 - 140

Page 15 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.

Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your P.O. #: CREDIT CARD (PHONE C

Sampler Initials: AF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		. //	1,2,3,6,7,8-Hexa CDD	2019/11/08		89	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2019/11/08		90	%	80 - 140
			1,2,3,7,8-Penta CDD	2019/11/08		93	%	80 - 140
			2,3,7,8-Tetra CDD	2019/11/08		92	%	80 - 140
			Octa CDD	2019/11/08		92	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2019/11/08		93	%	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2019/11/08		120	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2019/11/08		102	%	80 - 140
			1,2,3,6,7,8-Hexa CDF	2019/11/08		92	%	80 - 140
			1,2,3,7,8,9-Hexa CDF	2019/11/08		106	%	80 - 140
			1,2,3,7,8-Penta CDF	2019/11/08		98	%	80 - 140
			2,3,4,6,7,8-Hexa CDF	2019/11/08		100	%	80 - 140
			2,3,4,7,8-Penta CDF	2019/11/08		102	%	80 - 140
			2,3,7,8-Tetra CDF	2019/11/08		92	%	80 - 140
			Octa CDF	2019/11/08		90	%	80 - 140
9669763	AGU	RPD	1,2,3,4,6,7,8-Hepta CDD	2019/11/08	5.1		%	25
			1,2,3,4,7,8-Hexa CDD	2019/11/08	12		%	25
			1,2,3,6,7,8-Hexa CDD	2019/11/08	5.5		%	25
			1,2,3,7,8,9-Hexa CDD	2019/11/08	2.2		%	25
			1,2,3,7,8-Penta CDD	2019/11/08	4.4		%	25
			2,3,7,8-Tetra CDD	2019/11/08	1.1		%	25
			Octa CDD	2019/11/08	1.1		%	25
			1,2,3,4,6,7,8-Hepta CDF	2019/11/08	2.2		%	25
			1,2,3,4,7,8,9-Hepta CDF	2019/11/08	0		%	25
			1,2,3,4,7,8-Hexa CDF	2019/11/08	0.99		%	25
			1,2,3,6,7,8-Hexa CDF	2019/11/08	3.3		%	25
			1,2,3,7,8,9-Hexa CDF	2019/11/08	9.9		%	25
			1,2,3,7,8-Penta CDF	2019/11/08	1.0		%	25
			2,3,4,6,7,8-Hexa CDF	2019/11/08	1.0		%	25
			2,3,4,7,8-Penta CDF	2019/11/08	3.0		%	25
			2,3,7,8-Tetra CDF	2019/11/08	4.3		%	25
			Octa CDF	2019/11/08	6.5		%	25
9669763	AGU	Method Blank	C13-1234678 HeptaCDD	2019/11/08		74	%	30 - 130
			C13-1234678 HeptaCDF	2019/11/08		63	%	30 - 130
			C13-123678 HexaCDD	2019/11/08		84	%	30 - 130
			C13-123678 HexaCDF	2019/11/08		68	%	30 - 130
			C13-12378 PentaCDD	2019/11/08		89	%	30 - 130
			C13-12378 PentaCDF	2019/11/08		80	%	30 - 130
			C13-2378 TetraCDD	2019/11/08		77	%	30 - 130
			C13-2378 TetraCDF	2019/11/08		70	%	30 - 130
			C13-OCDD	2019/11/08		70	%	30 - 130
			1,2,3,4,6,7,8-Hepta CDD	2019/11/08	<0.545, EDL=0.545		pg/g	
			1,2,3,4,7,8-Hexa CDD	2019/11/08	<0.582, EDL=0.582		pg/g	
			1,2,3,6,7,8-Hexa CDD	2019/11/08	<0.517, EDL=0.517		pg/g	
			1,2,3,7,8,9-Hexa CDD	2019/11/08	<0.536, EDL=0.536		pg/g	
			1,2,3,7,8-Penta CDD	2019/11/08	<0.438, EDL=0.438		pg/g	

Page 16 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD. Client Project #: ANNUAL ASH SAMPLE

Site Location: WILLIAMS LAKE POWER PALNT-AC11

Your P.O. #: CREDIT CARD (PHONE C

Sampler Initials: AF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			2,3,7,8-Tetra CDD	2019/11/08	<0.544, EDL=0.544		pg/g	
			Octa CDD	2019/11/08	1.42, EDL=0.547		pg/g	
			Total Hepta CDD	2019/11/08	<0.545, EDL=0.545		pg/g	
			Total Hexa CDD	2019/11/08	<0.544, EDL=0.544		pg/g	
			Total Penta CDD	2019/11/08	<0.438, EDL=0.438		pg/g	
			Total Tetra CDD	2019/11/08	<0.544, EDL=0.544		pg/g	
			1,2,3,4,6,7,8-Hepta CDF	2019/11/08	<0.533, EDL=0.533		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2019/11/08	<0.600, EDL=0.600		pg/g	
			1,2,3,4,7,8-Hexa CDF	2019/11/08	<0.448, EDL=0.448		pg/g	
			1,2,3,6,7,8-Hexa CDF	2019/11/08	<0.390, EDL=0.390		pg/g	
			1,2,3,7,8,9-Hexa CDF	2019/11/08	<0.468, EDL=0.468		pg/g	
			1,2,3,7,8-Penta CDF	2019/11/08	<0.578, EDL=0.578		pg/g	
			2,3,4,6,7,8-Hexa CDF	2019/11/08	<0.445, EDL=0.445		pg/g	
			2,3,4,7,8-Penta CDF	2019/11/08	<0.536, EDL=0.536		pg/g	
			2,3,7,8-Tetra CDF	2019/11/08	<0.462, EDL=0.462		pg/g	
			Octa CDF	2019/11/08	<0.583, EDL=0.583		pg/g	
			Total Hepta CDF	2019/11/08	<0.564, EDL=0.564		pg/g	
			Total Hexa CDF	2019/11/08	<0.436, EDL=0.436		pg/g	
			Total Penta CDF	2019/11/08	<0.556, EDL=0.556		pg/g	
			Total Tetra CDF	2019/11/08	<0.462, EDL=0.462		pg/g	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

Page 17 of 19

ATLANTIC POWER (WILLIAMS LAKE) LTD.
Client Project #: ANNUAL ASH SAMPLE
Site Location: WILLIAMS LAKE POWER PALNT-AC11
Your P.O. #: CREDIT CARD (PHONE C
Sampler Initials: AF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the	ne following individual(s).
--	-----------------------------

Briefy to Andy Lu, Ph.D., P.Chem., Scientific Specialist	_
Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services	
mm onton	
Melissa McIntosh, Project Manager	_

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 18 of 19

Appendix B - Ash Analysis

						CHA			0,00			084	7328	3 88	Y FCD-00077/05
	neby: 4505 Canada Way, Burnat			_	665-8566					OC#:			_		geof
Invoice Information		nation (if differs	from in	rvoice)	Wa.				mation (v	where ap	plicable)			Turnaround Time (TA	
Atlantic Power Williams Lake	Company Name:			_		Quota	ation #:	e-mail					-		THE RESERVE OF THE PARTY OF THE
contact Name: Jacob Steyl	Contact Name:						/ AFER				-		PIER	E PROVIDE ADVANCE NOTIC Rush TAT (Surcharges w	CONTRACTOR OF THE PARTY OF THE
ddress: 4455 Mackenzie Ave N Williams Lake PC: V2G SE8	Address:		0			Projec	ocation:		Ash Samp		1000		1	Same Day	2 Days
Prone: 250-392-6394 250-267-2281 (cell)	Phone:	,		10.75	100	Site #		WHITE	s take For	wei Pun	- MALL		1	1 Day	3 Days
mat: jsteyl@atlanticpower.com	Email;	003017		1228			illed By:	Al Frenc	dt				Date	Required:	
Regulatory Criteria	Special Instr	ructions	T					s Reques		207 10	- 21	16.	Rush	Confirmation #:	
Terrent Dec															
CCME (Specify) R Other (Specify) RC MOE Methods soe Orlinking Water BC Water Quality SAMPLES MUST BE SEPT COOL (<10 °C) FROM TIME O	F SAVIPLING UNTIL DELIVERY TO	G MRXXAM.	Metals as per EPA 1311		TQ as per tPAA 8275							CONTANUES SUBMITTED	- DO NOT ANALYZE	Prisont Intact //	TEMPERATURES J/P7
BC MOE Methods size Orlinking Water BC Water Quality SAMPLES ARUST BE KEPT COOK (< 10 °C) FROM TIME O	F SAMPLING DWITE DELIVERY TO	(Py)	TCLP Metalcas per IPA 1311									IN OF CONTARNERS SUBMITTED	HOLD- DO NOT ANALYZE		J148
BC MOE Methods size Orlinking Water BC Water Quality SAMPLES ARUST BE KEPT COOK (< 10 °C) FROM TIME O	F SAMPLING ENTIL DELIVERY TO be Date Sampled builton (1999)/MM/2001 Sa	O MAXXAM Time ampled Matri	× TQP Metalcas per IPA 1311	Descriptures T60ss								A OF CONTABNITIES SUBMITTED	HOLD- DO NOT ANALYZE	COOLING MEDIA PRESENT	J/P
SAMPLES MUST BE KEPT COOL (<10 °C) FROM TIME O Semple Identification Livered Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-8/M/ 14:90	ğ	Descriptures T60ss								A OF CONTANUES SUBMITTED	HOLD - DO NOT ANALYZE	COOLING MEDIA PRESENT	Y / N ENTS allysis on non-
Drinking Water BE SEPT COOL (< 10°C) FROM TIME O Semple Identification Lateurer Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	O MAXXAM Time ampled Matri	ğ	> Dissuln@funses T60as								A OF CONTAINERS SUBMITTED	HOLD - DO NOT ANALYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-
SAMPLES MUST BE SEPT CODE (<10 °C) PROMITIME Of Leavest Glass Jars (clear) filled with Ash	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-8/M/ 14:90	ğ	> Dissuln@funses T60as	PANT TEG as per EPAA							A OF CONTAINERS SUBMITTED	HORD - DO NOT ANALYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME O Semple Identification L Joinet Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-8/M/ 14:90	ğ	> Dissuln@funses T60as	PANT TEG as per EPAA							IN OF CONTAMINS SUBMITTED	HOKD- DO NOT ANALYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-
SAMPLES ATUST BE KEPT COOL (<10 °C) FROM TIME O Semple Identification Glass Jars (clear) filled with Ash	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-8/M/ 14:90	ğ	> Dissuln@funses T60as	PANT TEG as per EPAA							A OF CONTAMENS SUBMITTED	HOLD - DO NOT ANALYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-
SAMPLES MUST BE SEPT CODE (< 10 °C) PROMITIME O Semple Identification Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash 4 5 6	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-8/M/ 14:90	ğ	> Dissuln@funses T60as	PANT TEG as per EPAA							IN OF CONTAINERS SUBMITTED	HOLD - DO NOT ANILYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-
SAMPLES MUST BE KEPT COOL (< 10 °C) PROMITINE O Semple Identification Glass Jars (clear) filled with Ash	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-SIMS 14:90	ğ	> Dissuln@funses T60as	PANT TEG as per EPAA							A OF CONTANUES SUBMITTED	HOLD- DO NOT ANALYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-
SAMPLES MUST BE SEPT CODE (< 10 °C) PROMITIME O Semple Identification Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash Glass Jars (clear) filled with Ash 4 5 6	F SAVIPLING UNTIL DELIVERY TO by Date Sampled (1977)/M/s/bol (197	G MAXXAM Time a rupled H-SIMS 14:90	ğ	> Dissuln@funses T60as	PANT TEG as per EPAA							A OF CONTANUES SUBMITTED	HOLD - DO NOT ANALYZE	COOLING MEDIA PRESENT COMMIT	Y / N ENTS allysis on non-